Antibacterial and Anti-biofilm Effects of Thymoquinone Against Carbapenem-Resistant Uropathogenic .

Hye-Won Jin, Yong-Bin Eom
Author Information
  1. Hye-Won Jin: Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538 Republic of Korea.
  2. Yong-Bin Eom: Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538 Republic of Korea. ORCID

Abstract

Carbapenem antibiotics are widely used for their broad antibacterial effects, but the emergence of carbapenem-resistant has recently become a global problem. To solve this problem, research is needed to find compounds that increase antibiotic activity. Therefore, this study aimed to validate the antibacterial and anti-biofilm effects, as well as the inhibition of gene expression of thymoquinone, an extract of commonly used as a spice in many dishes. The minimum inhibitory concentration of carbapenem antibiotics and thymoquinone was determined. Phenotypic analysis was performed to confirm the effect of thymoquinone on motility, which is one of the virulence factors of carbapenem-resistant uropathogenic (CR-UPEC). Furthermore, quantitative real-time polymerase chain reaction analysis was used to determine the expression levels of carbapenemase gene ( ), efflux pump genes (, , , ), as well as motility and adhesion genes (, ). In addition, biofilm inhibition and biofilm eradication assays were performed. All strains showed resistance to carbapenem antibiotics, while an antibacterial effect was confirmed at a concentration of 256 ��g/mL of thymoquinone. Phenotypic analysis revealed a nearly 50% suppression in migration distance compared to the control group at 128 ��g/mL of thymoquinone. Subsequent gene expression tests indicated the downregulation of carbapenemase-, efflux pump-, motility-, and adhesion genes by thymoquinone. Furthermore, our findings demonstrated that thymoquinone exhibits both biofilm formation inhibition and eradication effects. These findings suggest that thymoquinone may serve as a potential antibiotic adjuvant for treating CR-UPEC and could be a valuable resource in combating UTIs caused by multidrug-resistant bacteria.
Graphical Abstract:

Keywords

References

  1. Indian J Med Microbiol. 2011 Apr-Jun;29(2):91-2 [PMID: 21654100]
  2. Arch Microbiol. 2020 Apr;202(3):473-482 [PMID: 31705142]
  3. Int J Antimicrob Agents. 2015 Feb;45(2):130-6 [PMID: 25465526]
  4. Antibiotics (Basel). 2019 Aug 19;8(3): [PMID: 31430964]
  5. Dan Med Bull. 2011 Apr;58(4):B4187 [PMID: 21466767]
  6. J Bacteriol. 2007 Aug;189(15):5523-33 [PMID: 17513470]
  7. South Med J. 2011 Jan;104(1):40-5 [PMID: 21119555]
  8. Int J Biochem Cell Biol. 2006;38(8):1249-53 [PMID: 16314136]
  9. Int J Mol Sci. 2017 Sep 30;18(10): [PMID: 28973965]
  10. Biochem Biophys Res Commun. 2014 Oct 17;453(2):254-67 [PMID: 24878531]
  11. Antimicrob Agents Chemother. 2016 Apr 22;60(5):2901-11 [PMID: 26926643]
  12. Curr Ther Res Clin Exp. 2011 Oct;72(5):204-15 [PMID: 24653507]
  13. Iran J Basic Med Sci. 2014 Dec;17(12):929-38 [PMID: 25859296]
  14. Res Microbiol. 2018 Sep - Oct;169(7-8):425-431 [PMID: 29128373]
  15. mBio. 2016 Nov 22;7(6): [PMID: 27879336]
  16. Curr Drug Targets. 2012 Oct;13(11):1386-99 [PMID: 22664092]
  17. J Enzyme Inhib Med Chem. 2017 Dec;32(1):917-919 [PMID: 28719998]
  18. Sci Rep. 2018 Jul 6;8(1):10291 [PMID: 29980699]
  19. Adv Enzymol Relat Areas Mol Biol. 2011;77:1-60 [PMID: 21692366]
  20. BMC Microbiol. 2019 Sep 5;19(1):210 [PMID: 31488061]
  21. Phytother Res. 2003 Apr;17(4):299-305 [PMID: 12722128]
  22. Ther Adv Urol. 2019 May 02;11:1756287219832172 [PMID: 31105774]
  23. Antibiotics (Basel). 2023 Apr 19;12(4): [PMID: 37107140]
  24. Annu Rev Biochem. 2004;73:467-89 [PMID: 15189150]
  25. Antibiotics (Basel). 2021 Feb 05;10(2): [PMID: 33562526]
  26. Oncotarget. 2017 Apr 18;8(31):51907-51919 [PMID: 28881699]
  27. PLoS One. 2014 Aug 21;9(8):e105592 [PMID: 25144201]
  28. J Biol Chem. 2014 Apr 11;289(15):10680-10690 [PMID: 24558035]
  29. Medicine (Baltimore). 2020 Jan;99(2):e18769 [PMID: 31914101]
  30. J Hosp Infect. 2021 Nov;117:9-16 [PMID: 34428502]
  31. Biomed Pharmacother. 2021 Jun;138:111492 [PMID: 33743334]
  32. Antibiotics (Basel). 2022 Aug 02;11(8): [PMID: 36009912]
  33. Biochem Pharmacol. 2000 Aug 15;60(4):457-70 [PMID: 10874120]
  34. J Clin Microbiol. 2008 Sep;46(9):2879-83 [PMID: 18614657]
  35. Biofouling. 2019 Aug;35(7):758-767 [PMID: 31505984]
  36. J Antimicrob Chemother. 2020 Feb 1;75(2):300-308 [PMID: 31633764]
  37. Hematology Am Soc Hematol Educ Program. 2013;2013:428-32 [PMID: 24319215]

Word Cloud

Created with Highcharts 10.0.0thymoquinoneantibioticsusedantibacterialeffectsinhibitiongeneexpressionanalysisgenesbiofilmcarbapenem-resistantproblemantibioticwellconcentrationcarbapenemPhenotypicperformedeffectmotilityCR-UPECFurthermoreeffluxadhesioneradicationfindingsThymoquinoneUropathogenicCarbapenemwidelybroademergencerecentlybecomeglobalsolveresearchneededfindcompoundsincreaseactivityThereforestudyaimedvalidateanti-biofilmextractcommonlyspicemanydishesminimuminhibitorydeterminedconfirmonevirulencefactorsuropathogenicquantitativereal-timepolymerasechainreactiondeterminelevelscarbapenemasepumpadditionassaysstrainsshowedresistanceconfirmed256 ��g/mLrevealednearly50%suppressionmigrationdistancecomparedcontrolgroup128 ��g/mLSubsequenttestsindicateddownregulationcarbapenemase-pump-motility-demonstratedexhibitsformationsuggestmayservepotentialadjuvanttreatingvaluableresourcecombatingUTIscausedmultidrug-resistantbacteriaGraphicalAbstract:AntibacterialAnti-biofilmEffectsCarbapenem-ResistantAnti-bacterialAntibiofilmCarbapenemsEscherichiacoli

Similar Articles

Cited By (1)