Advancing Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) Diagnosis: A Comparative Analysis of Machine Learning Methodologies.

Joseph J Janicki, Bernadette M M Zwaans, Sarah N Bartolone, Elijah P Ward, Michael B Chancellor
Author Information
  1. Joseph J Janicki: Underactive Bladder Foundation, Pittsburgh, PA 15235, USA.
  2. Bernadette M M Zwaans: Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA.
  3. Sarah N Bartolone: Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA.
  4. Elijah P Ward: Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA.
  5. Michael B Chancellor: Underactive Bladder Foundation, Pittsburgh, PA 15235, USA. ORCID

Abstract

This study aimed to improve machine learning models for diagnosing interstitial cystitis/bladder pain syndrome (IC/BPS) by comparing classical machine learning methods with newer AutoML approaches, utilizing biomarker data and patient-reported outcomes as features. We applied various machine learning techniques to biomarker data from the previous IP4IC and ICRS studies to predict the presence of IC/BPS, a disorder impacting the urinary bladder. Data were sourced from two nationwide, crowd-sourced collections of urine samples involving 2009 participants. The models utilized included logistic regression, support vector machines, random forests, k-nearest neighbors, and AutoGluon. Expanding the dataset for model training and evaluation resulted in improved performance metrics compared to previously published findings. The implementation of AutoML methods yielded enhancements in model accuracy over classical techniques. The top-performing models achieved a receiver-operating characteristic area under the curve (ROC-AUC) of up to 0.96. This research demonstrates an improvement in model performance relative to earlier studies, with the top model for binary classification incorporating objective urinary biomarker levels. These advancements represent a significant step toward developing a reliable classification model for the diagnosis of IC/BPS.

Keywords

References

  1. J Urol. 2013 Jan;189(1):141-5 [PMID: 23164386]
  2. PLoS One. 2017 Oct 31;12(10):e0185686 [PMID: 29088231]
  3. BMC Urol. 2014 Aug 01;14:57 [PMID: 25085007]
  4. Can Urol Assoc J. 2009 Dec;3(6):478 [PMID: 20019977]
  5. J Urol. 2011 Aug;186(2):540-4 [PMID: 21683389]
  6. Urology. 1997 May;49(5A Suppl):58-63 [PMID: 9146003]
  7. J Urol. 2020 Sep;204(3):518-523 [PMID: 32223699]
  8. Diagnostics (Basel). 2022 Apr 27;12(5): [PMID: 35626252]
  9. J Urol. 2004 Jan;171(1):462-6 [PMID: 14665956]
  10. Digit Health. 2023 Nov 21;9:20552076231216280 [PMID: 38025103]
  11. Sci Rep. 2021 Jan 13;11(1):914 [PMID: 33441752]
  12. Int Urogynecol J. 2018 Jul;29(7):961-966 [PMID: 29372285]
  13. J Urol. 2018 May;199(5):1344-1350 [PMID: 29225061]
  14. Int J Urol. 2019 Jun;26 Suppl 1:26-34 [PMID: 31144757]
  15. Int Urol Nephrol. 2010 Sep;42(3):629-35 [PMID: 19784793]
  16. Transl Androl Urol. 2015 Dec;4(6):594-9 [PMID: 26813711]
  17. J Urol. 2019 Nov;202(5):880-889 [PMID: 30925127]
  18. Tumour Biol. 2017 Apr;39(4):1010428317697552 [PMID: 28378639]
  19. Scand J Prim Health Care. 2009;27(2):74-9 [PMID: 19247873]
  20. Neurourol Urodyn. 2015 Mar;34(3):255-63 [PMID: 25783168]
  21. J Urol. 2015 May;193(5):1545-53 [PMID: 25623737]
  22. Low Urin Tract Symptoms. 2021 Jan;13(1):139-143 [PMID: 32830459]
  23. J Urol. 2022 Jul;208(1):34-42 [PMID: 35536143]
  24. Urology. 2024 Jul;189:19-26 [PMID: 38677373]
  25. Am J Physiol Renal Physiol. 2020 Jun 1;318(6):F1391-F1399 [PMID: 32281420]

Word Cloud

Created with Highcharts 10.0.0modelmachinelearningIC/BPSbiomarkermodelsinterstitialclassicalmethodsAutoMLdatatechniquesstudiesurinarybladderurineperformanceclassificationstudyaimedimprovediagnosingcystitis/bladderpainsyndromecomparingnewerapproachesutilizingpatient-reportedoutcomesfeaturesappliedvariouspreviousIP4ICICRSpredictpresencedisorderimpactingDatasourcedtwonationwidecrowd-sourcedcollectionssamplesinvolving2009participantsutilizedincludedlogisticregressionsupportvectormachinesrandomforestsk-nearestneighborsAutoGluonExpandingdatasettrainingevaluationresultedimprovedmetricscomparedpreviouslypublishedfindingsimplementationyieldedenhancementsaccuracytop-performingachievedreceiver-operatingcharacteristicareacurveROC-AUC096researchdemonstratesimprovementrelativeearliertopbinaryincorporatingobjectivelevelsadvancementsrepresentsignificantsteptowarddevelopingreliablediagnosisAdvancingInterstitialCystitis/BladderPainSyndromeDiagnosis:ComparativeAnalysisMachineLearningMethodologiesinflammationcystitis

Similar Articles

Cited By