Sarah Panera-Martínez, Rosa Capita, Ángela Pedriza-González, María Díez-Moura, Félix Riesco-Peláez, Carlos Alonso-Calleja
A total of 104 samples of chicken meat acquired on the day of slaughter from two slaughterhouses in northwestern Spain were analyzed. These comprised 26 carcasses and 26 cuts from each of the two establishments. An average load of 5.39 ± 0.61 log cfu/g (total aerobic counts) and 4.90 ± 0.40 log cfu/g (psychrotrophic microorganisms) were obtained, with differences ( < 0.05) between types of samples and between slaughterhouses. Culturing methods involving isolation based on the UNE-EN-ISO 11290-1:2018 norm and identification of isolates by polymerase chain reaction (PCR) to detect the gene allowed the detection of in 75 samples (72.1% of the total; 50.0% of the carcasses and 94.2% of the cuts). The 75 isolates, one for each positive sample, were tested for resistance against a panel of 15 antibiotics of clinical interest by the disc diffusion method. All isolates belonged to the serogroup IIa (multiplex PCR assay) and showed resistance to between four and ten antibiotics, with an average value of 5.7 ± 2.0 resistances per isolate, this rising to 7.0 ± 2.1 when strains with resistance and reduced susceptibility were taken together. A high prevalence of resistance was observed for antibiotics belonging to the cephalosporin and quinolone families. However, the level of resistance was low for antibiotics commonly used to treat listeriosis (e.g., ampicillin or gentamicin). Nine different resistance patterns were noted. One isolate with each resistance pattern was tested for its ability to form biofilms on polystyrene during 72 h at 12 °C. The total biovolume of the biofilms registered through confocal laser scanning microscopy (CLSM) in the observation field of 16,078.24 μm ranged between 13,967.7 ± 9065.0 μm and 33,478.0 ± 23,874.1 μm, and the biovolume of inactivated bacteria between 0.5 ± 0.4 μm and 179.1 ± 327.6 μm. A direct relationship between the level of resistance to antibiotics and the ability of strains to form biofilms is suggested.
Microorganisms. 2023 Sep 04;11(9):
[PMID:
37764076]
Antimicrob Agents Chemother. 1999 Sep;43(9):2103-8
[PMID:
10471548]
Foods. 2018 May 03;7(5):
[PMID:
29751496]
Food Microbiol. 2021 Oct;99:103823
[PMID:
34119108]
Int J Food Microbiol. 1994 Sep;23(1):117-21
[PMID:
7811569]
Eur J Clin Microbiol Infect Dis. 1995 Mar;14(3):165-75
[PMID:
7614955]
J Food Prot. 2005 Aug;68(8):1729-33
[PMID:
21132987]
Food Microbiol. 2014 Sep;42:61-5
[PMID:
24929718]
Poult Sci. 2017 Sep 1;96(11):4046-4052
[PMID:
29050434]
Pathogens. 2020 Jun 30;9(7):
[PMID:
32629911]
PLoS One. 2022 Jul 6;17(7):e0270993
[PMID:
35793329]
J Food Prot. 2002 Dec;65(12):1888-93
[PMID:
12495006]
Int J Food Microbiol. 2007 Apr 20;115(3):268-80
[PMID:
17320231]
Int J Food Microbiol. 2001 Apr 11;65(1-2):75-82
[PMID:
11322703]
BMC Microbiol. 2015 Jul 25;15:144
[PMID:
26209099]
Foods. 2019 Nov 03;8(11):
[PMID:
31684121]
Pathogens. 2020 Dec 03;9(12):
[PMID:
33287445]
Poult Sci. 2021 Jan;100(1):263-272
[PMID:
33357690]
Meat Sci. 2002 Sep;62(1):45-50
[PMID:
22061190]
Infect Drug Resist. 2022 Jun 03;15:2865-2878
[PMID:
35686192]
Ultrasonics. 2020 Mar;102:105680
[PMID:
29361330]
Clin Microbiol Infect. 2012 Mar;18(3):268-81
[PMID:
21793988]
Front Microbiol. 2022 Feb 21;12:796040
[PMID:
35299835]
Int J Food Microbiol. 2000 Jul 25;59(1-2):73-7
[PMID:
10946841]
J Food Prot. 2014 Aug;77(8):1407-10
[PMID:
25198605]
Braz J Microbiol. 2014 Mar 10;44(4):1169-72
[PMID:
24688507]
Appl Environ Microbiol. 2014 Feb;80(4):1268-80
[PMID:
24317080]
J Food Prot. 2006 Feb;69(2):436-40
[PMID:
16496590]
Br Poult Sci. 2008 Sep;49(5):560-5
[PMID:
18836902]
BMC Microbiol. 2015 May 12;15:100
[PMID:
25963134]
Int J Food Microbiol. 2022 Dec 2;382:109916
[PMID:
36126498]
Foods. 2022 Aug 09;11(16):
[PMID:
36010385]
Front Microbiol. 2016 Apr 12;7:483
[PMID:
27148178]
Foodborne Pathog Dis. 2011 May;8(5):569-78
[PMID:
21166580]
Foods. 2023 Sep 06;12(18):
[PMID:
37761048]
Crit Rev Food Sci Nutr. 2013;53(1):11-48
[PMID:
23035919]
Foodborne Pathog Dis. 2014 Dec;11(12):969-73
[PMID:
25407460]
Int J Food Microbiol. 2005 Mar 1;99(1):1-6
[PMID:
15718024]
J Biotechnol. 2014 Dec 10;191:121-30
[PMID:
25240440]
Antibiotics (Basel). 2022 Dec 16;11(12):
[PMID:
36551484]
Lett Appl Microbiol. 2003;37(5):421-3
[PMID:
14633115]
FEMS Microbiol Lett. 2020 Feb 1;367(4):
[PMID:
31926017]
J Food Prot. 1990 May;53(5):411-417
[PMID:
31018302]
Int J Food Microbiol. 2019 Jan 16;289:209-214
[PMID:
30384192]
Br Poult Sci. 2021 Oct;62(5):701-709
[PMID:
33970711]
Microb Pathog. 2008 Aug;45(2):86-91
[PMID:
18486439]
Microorganisms. 2019 Nov 05;7(11):
[PMID:
31694193]
J Food Prot. 2002 Jul;65(7):1200-6
[PMID:
12117260]
J Food Prot. 2007 Aug;70(8):1835-43
[PMID:
17803139]
Biology (Basel). 2021 Dec 29;11(1):
[PMID:
35053044]
Braz J Microbiol. 2019 Oct;50(4):1063-1073
[PMID:
31478167]