Assessment of Tail-Cutting in Frozen Albacore () Through Ultrasound Inspection and Chemical Analysis.

Masafumi Yagi, Akira Sakai, Suguru Yasutomi, Kanata Suzuki, Hiroki Kashikura, Keiichi Goto
Author Information
  1. Masafumi Yagi: School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu-ku, Shizuoka-shi 424-8610, Shizuoka, Japan. ORCID
  2. Akira Sakai: Artificial Intelligence Laboratory, Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki-shi 211-8588, Kanagawa, Japan. ORCID
  3. Suguru Yasutomi: Artificial Intelligence Laboratory, Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki-shi 211-8588, Kanagawa, Japan.
  4. Kanata Suzuki: Artificial Intelligence Laboratory, Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki-shi 211-8588, Kanagawa, Japan. ORCID
  5. Hiroki Kashikura: Graduate School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu-ku, Shizuoka-shi 424-8610, Shizuoka, Japan.
  6. Keiichi Goto: School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu-ku, Shizuoka-shi 424-8610, Shizuoka, Japan.

Abstract

Fat content is the main criterion for evaluating albacore quality. However, no reports exist on the accuracy of the tail-cutting method, a method used to assess the fat content of albacore. Here, we evaluated this method by comparing it with chemical analysis and ultrasound inspection. We measured the actual fat content in albacore using chemical analysis and compared the results with those obtained using the tail-cutting method. Significant discrepancies (99% CI, -test) were observed in fat content among the tail-cutting samples. Using chemical analysis as the ground truth, the accuracy of tail-cutting from two different companies was 70.0% for company A and 51.9% for company B. An ultrasound inspection revealed that a higher fat content reduced the amplitude of ultrasound signals with statistical significance (99% CI, -test). Finally, machine learning algorithms were used to enforce the ultrasound inspection. The best combination of ultrasound inspection and a machine learning algorithm achieved an 84.2% accuracy for selecting fat-rich albacore, which is better than tail-cutting (73.6%). Our findings suggested that ultrasound inspection could be a valuable and non-destructive method for estimating the fat content of albacore, achieving better accuracy than the traditional tail-cutting method.

Keywords

References

  1. Nat Commun. 2019 Apr 9;10(1):1641 [PMID: 30967539]
  2. Can J Biochem Physiol. 1959 Aug;37(8):911-7 [PMID: 13671378]
  3. Theranostics. 2020 Mar 4;10(9):4277-4289 [PMID: 32226553]
  4. Physiol Rep. 2018 May;6(9):e13640 [PMID: 29732739]
  5. Sci Rep. 2021 Feb 11;11(1):3629 [PMID: 33574563]
  6. Crit Care Clin. 2014 Jan;30(1):1-24, v [PMID: 24295839]
  7. PLoS One. 2012;7(6):e39318 [PMID: 22723993]
  8. Foods. 2020 Nov 25;9(12): [PMID: 33255842]
  9. Int J Comput Assist Radiol Surg. 2020 Aug;15(8):1323-1333 [PMID: 32107746]
  10. Bioeng Transl Med. 2023 Oct 20;9(1):e10616 [PMID: 38193119]
  11. Sci Rep. 2022 Jul 13;12(1):11971 [PMID: 35831342]
  12. Sci Rep. 2022 Apr 15;12(1):6256 [PMID: 35428863]
  13. Meat Sci. 2012 Jun;91(2):93-8 [PMID: 22326063]
  14. J Food Prot. 2008 Mar;71(3):595-601 [PMID: 18389706]
  15. Foods. 2022 Oct 14;11(20): [PMID: 37430956]
  16. BMC Gastroenterol. 2024 Feb 23;24(1):81 [PMID: 38395765]
  17. Psychol Rev. 1958 Nov;65(6):386-408 [PMID: 13602029]
  18. Ultrason Sonochem. 2015 Nov;27:576-585 [PMID: 25937532]
  19. Sci Rep. 2024 May 6;14(1):10367 [PMID: 38710709]
  20. J Food Sci Technol. 2024 May;61(5):950-957 [PMID: 38487278]
  21. Appl Spectrosc. 2017 Jul;71(7):1403-1426 [PMID: 28534672]
  22. Public Health Nutr. 2011 Nov;14(11):2049-54 [PMID: 21324226]
  23. Nature. 2008 Jun 5;453(7196):783-7 [PMID: 18454136]
  24. SN Comput Sci. 2021;2(6):420 [PMID: 34426802]
  25. Biomed Pharmacother. 2021 May;137:111315 [PMID: 33561645]
  26. Meat Sci. 2012 Jan;90(1):216-25 [PMID: 21816544]
  27. Entropy (Basel). 2024 Apr 26;26(5): [PMID: 38785617]
  28. Food Res Int. 2020 Jul;133:109157 [PMID: 32466909]
  29. Foods. 2018 Oct 04;7(10): [PMID: 30287795]

Word Cloud

Created with Highcharts 10.0.0contenttail-cuttingultrasoundalbacoremethodfatinspectionaccuracychemicalanalysismachinelearningusedusing99%CI-testcompanybetterfrozenFatmaincriterionevaluatingqualityHoweverreportsexistassessevaluatedcomparingmeasuredactualcomparedresultsobtainedSignificantdiscrepanciesobservedamongsamplesUsinggroundtruthtwodifferentcompanies700%519%BrevealedhigherreducedamplitudesignalsstatisticalsignificanceFinallyalgorithmsenforcebestcombinationalgorithmachieved842%selectingfat-rich736%findingssuggestedvaluablenon-destructiveestimatingachievingtraditionalAssessmentTail-CuttingFrozenAlbacoreUltrasoundInspectionChemicalAnalysistuna

Similar Articles

Cited By

No available data.