Applications and Prospects of CRISPR/Cas9 Technology in the Breeding of Major Tropical Crops.

Lixia Zhou, Xianhai Zeng, Yaodong Yang, Rui Li, Zhihao Zhao
Author Information
  1. Lixia Zhou: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  2. Xianhai Zeng: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  3. Yaodong Yang: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China. ORCID
  4. Rui Li: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
  5. Zhihao Zhao: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.

Abstract

China is a major producer of tropical crops globally, boasting rich varieties and diverse functions. Tropical crops account for two-thirds of the plant species in this country. Many crops and their products, such as oil palm, rubber, banana, sugarcane, cassava, and papaya are well known to people. Most of these products are irreplaceable and possess special functions. They not only supply important raw materials for people's daily life and for industrial and agricultural production but also contribute to the economic growth in the tropical and subtropical regions of China. However, the modern molecular breeding of these crops is severely hampered by their biological characteristics and genetic complexity. Issues such as polyploidy, heterozygosity, vegetative propagation, long juvenile periods, and large plant sizes result in time consuming, low efficiency, and slow progress in conventional breeding of the major tropical crops. The development of genome-editing technologies has brought a new way in tropical crops breeding. As an emerging gene-editing technology, the CRISPR-Cas9 system has been widely used in plants, adopted for its higher targeting efficiency, versatility, and ease of usage. This approach has been applied in oil palm, rubber, banana, sugarcane, cassava, and papaya. This review summarized the delivery patterns, mutation detection, and application of the CRISPR-Cas9 system in tropical crop breeding, discussed the existing problems, and addressed prospects for future applications in this field, providing references to relevant studies.

Keywords

References

  1. Genes (Basel). 2021 Nov 25;12(12): [PMID: 34946829]
  2. Microbiology (Reading). 2005 Mar;151(Pt 3):653-663 [PMID: 15758212]
  3. Front Biosci (Landmark Ed). 2021 Oct 30;26(10):916-927 [PMID: 34719215]
  4. Life Sci. 2019 Sep 1;232:116636 [PMID: 31295471]
  5. Mol Ther. 2019 Apr 10;27(4):735-746 [PMID: 30803822]
  6. Sci Adv. 2018 Sep 05;4(9):eaat6086 [PMID: 30191180]
  7. Plant Biotechnol J. 2019 Feb;17(2):421-434 [PMID: 30019807]
  8. Plant Biotechnol J. 2021 Oct;19(10):1979-1987 [PMID: 33960612]
  9. Int J Biol Macromol. 2022 Jan 31;196:131-143 [PMID: 34942204]
  10. Plant J. 2024 Aug;119(4):2133-2143 [PMID: 38963727]
  11. Mol Microbiol. 2002 Mar;43(6):1565-75 [PMID: 11952905]
  12. J AOAC Int. 2021 Jun 12;104(3):541-545 [PMID: 33295625]
  13. 3 Biotech. 2024 Jun;14(6):166 [PMID: 38817736]
  14. Virus Res. 2003 Mar;92(1):47-54 [PMID: 12606075]
  15. BMC Plant Biol. 2020 Sep 15;20(1):425 [PMID: 32933485]
  16. Int J Mol Sci. 2020 Sep 04;21(18): [PMID: 32899704]
  17. Front Plant Sci. 2019 May 16;10:612 [PMID: 31156675]
  18. Nat Plants. 2024 Oct;10(10):1502-1513 [PMID: 39242983]
  19. Front Plant Sci. 2018 May 08;9:617 [PMID: 29868073]
  20. Methods Mol Biol. 2019;1917:297-307 [PMID: 30610645]
  21. Mol Hortic. 2023 Aug 23;3(1):16 [PMID: 37789476]
  22. Plant J. 1998 Dec;16(6):735-43 [PMID: 10069079]
  23. Metab Eng. 2020 May;59:76-86 [PMID: 32006663]
  24. GM Crops Food. 2023 Dec 31;14(1):1-17 [PMID: 37725519]
  25. ACS Synth Biol. 2021 Jun 18;10(6):1451-1464 [PMID: 34009946]
  26. Front Plant Sci. 2023 Oct 02;14:1245433 [PMID: 37849838]
  27. Front Plant Sci. 2022 Oct 26;13:1009860 [PMID: 36388608]
  28. Front Genome Ed. 2021 Apr 29;3:654996 [PMID: 34713257]
  29. Genes (Basel). 2021 Sep 15;12(9): [PMID: 34573398]
  30. Int J Mol Sci. 2024 Apr 26;25(9): [PMID: 38731930]
  31. Front Plant Sci. 2024 Mar 27;15:1369416 [PMID: 38601306]
  32. Genetics. 2010 Oct;186(2):757-61 [PMID: 20660643]
  33. Int J Mol Sci. 2022 Mar 25;23(7): [PMID: 35408979]
  34. BMC Biotechnol. 2018 Oct 23;18(1):68 [PMID: 30352590]
  35. Nat Genet. 2024 May;56(5):737 [PMID: 38750321]
  36. Plant Biotechnol J. 2021 Jul;19(7):1291-1293 [PMID: 33934462]
  37. Annu Rev Plant Biol. 2019 Apr 29;70:667-697 [PMID: 30835493]
  38. Front Genome Ed. 2021 Jul 08;3:673566 [PMID: 34713261]
  39. Cells. 2023 Apr 07;12(8): [PMID: 37190012]
  40. Front Plant Sci. 2023 Mar 17;13:1079254 [PMID: 37007603]
  41. Int J Mol Sci. 2023 Jun 26;24(13): [PMID: 37445824]
  42. Mar Biotechnol (NY). 2019 Aug;21(4):441-447 [PMID: 31119501]
  43. Genes (Basel). 2022 Sep 14;13(9): [PMID: 36140817]
  44. Trends Genet. 2021 Jul;37(7):639-656 [PMID: 33896583]
  45. Methods Mol Biol. 2019;1961:127-134 [PMID: 30912044]
  46. Plant Biotechnol J. 2020 Jan;18(1):17-19 [PMID: 31344316]
  47. Plant Biotechnol J. 2022 Jul;20(7):1238-1240 [PMID: 35534986]
  48. Biotechnol J. 2021 Jun;16(6):e2000650 [PMID: 33710783]
  49. Genome Biol. 2019 Apr 25;20(1):80 [PMID: 31018865]
  50. Innovation (Camb). 2022 Oct 25;4(1):100345 [PMID: 36387605]
  51. Plant Methods. 2023 Aug 3;19(1):78 [PMID: 37537660]
  52. Mol Biol Rep. 2024 Sep 13;51(1):981 [PMID: 39269576]
  53. Nature. 2008 Apr 24;452(7190):991-6 [PMID: 18432245]
  54. Science. 2007 Mar 23;315(5819):1709-12 [PMID: 17379808]
  55. Nature. 2016 May 05;533(7601):125-9 [PMID: 27120160]
  56. Methods Mol Biol. 2022;2464:65-82 [PMID: 35258825]
  57. Trends Plant Sci. 2023 Oct;28(10):1144-1165 [PMID: 37331842]
  58. J Exp Bot. 2022 Feb 08;: [PMID: 35137037]
  59. Plant Biotechnol J. 2024 Feb;22(2):379-385 [PMID: 37822083]
  60. Nat Biotechnol. 2023 May;41(5):673-685 [PMID: 36357719]
  61. Funct Plant Biol. 2024 May;51: [PMID: 38696670]
  62. Mol Biotechnol. 2024 Jul;66(7):1563-1580 [PMID: 37340198]
  63. Plant Cell. 2016 Sep;28(9):1998-2015 [PMID: 27600536]
  64. Front Plant Sci. 2020 Jul 17;11:1063 [PMID: 32765553]
  65. PeerJ. 2022 Jan 5;10:e12664 [PMID: 35036088]
  66. Science. 2023 Jan 20;379(6629):eadd8643 [PMID: 36656942]
  67. Nat Biotechnol. 2020 Nov;38(11):1274-1279 [PMID: 33046875]
  68. Nature. 2017 Nov 23;551(7681):464-471 [PMID: 29160308]
  69. Methods Mol Biol. 2018;1676:15-40 [PMID: 28986902]
  70. Nat Biotechnol. 2013 Aug;31(8):691-3 [PMID: 23929340]
  71. J Agric Food Chem. 2022 Jun 22;70(24):7343-7359 [PMID: 35695482]
  72. Front Plant Sci. 2022 Dec 12;13:1042828 [PMID: 36578341]
  73. Mol Ther Nucleic Acids. 2024 Feb 05;35(1):102138 [PMID: 38379727]
  74. Methods Mol Biol. 2022;2495:29-46 [PMID: 35696026]
  75. Annu Rev Phytopathol. 1998;36:415-37 [PMID: 15012507]
  76. Biotechniques. 2018 Jun;64(6):275-278 [PMID: 29939088]
  77. Biol Direct. 2006 Mar 16;1:7 [PMID: 16545108]
  78. J Adv Res. 2020 Oct 21;29:207-221 [PMID: 33842017]
  79. Commun Biol. 2019 Jan 31;2:46 [PMID: 30729184]
  80. Nat Biotechnol. 2020 May;38(5):582-585 [PMID: 32393904]
  81. J Genet Genomics. 2021 Aug 20;48(8):661-670 [PMID: 34362681]
  82. Nat Commun. 2023 Jan 5;14(1):85 [PMID: 36604425]
  83. Int J Mol Sci. 2019 Oct 28;20(21): [PMID: 31661801]
  84. J Mol Evol. 2005 Feb;60(2):174-82 [PMID: 15791728]
  85. Nat Plants. 2022 Feb;8(2):110-117 [PMID: 35027699]
  86. Methods Mol Biol. 2024;2791:45-56 [PMID: 38532091]
  87. Nat Biotechnol. 2022 Jan;40(1):94-102 [PMID: 34475560]
  88. Sheng Wu Gong Cheng Xue Bao. 2005 Jan;21(1):58-65 [PMID: 15859330]
  89. Front Plant Sci. 2021 Nov 22;12:773656 [PMID: 34880893]
  90. Plant Biotechnol J. 2018 Dec;16(12):2053-2062 [PMID: 29723918]
  91. Plant Commun. 2024 Feb 12;5(2):100741 [PMID: 37897041]
  92. Plants (Basel). 2020 Mar 12;9(3): [PMID: 32178429]
  93. Plant Cell. 2023 Jan 2;35(1):218-238 [PMID: 36066192]
  94. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  95. Int J Mol Sci. 2020 Aug 28;21(17): [PMID: 32872311]
  96. BMC Plant Biol. 2021 May 29;21(1):244 [PMID: 34051757]
  97. G3 (Bethesda). 2021 Apr 15;11(4): [PMID: 33855431]
  98. Plant Methods. 2022 Aug 6;18(1):98 [PMID: 35933391]
  99. J Genet Genomics. 2017 Apr 20;44(4):207-213 [PMID: 28416245]
  100. Transgenic Res. 2018 Oct;27(5):451-460 [PMID: 29987710]
  101. Nature. 2019 Oct;574(7776):15 [PMID: 31576029]
  102. Fungal Biol. 2022 Jan;126(1):35-46 [PMID: 34930557]
  103. Plant Biotechnol J. 2021 Apr;19(4):654-656 [PMID: 33369835]
  104. Molecules. 2023 Sep 26;28(19): [PMID: 37836653]
  105. BMC Plant Biol. 2023 Jun 7;23(1):305 [PMID: 37286962]
  106. Plant Mol Biol. 2022 Jun;109(3):177-191 [PMID: 33604743]
  107. Int J Mol Sci. 2023 Nov 13;24(22): [PMID: 38003431]
  108. Nat Biotechnol. 2013 Aug;31(8):688-91 [PMID: 23929339]
  109. Funct Integr Genomics. 2018 Jan;18(1):89-99 [PMID: 29188477]
  110. Plant Cell Rep. 2021 Apr;40(4):595-604 [PMID: 33423074]
  111. J Bacteriol. 1987 Dec;169(12):5429-33 [PMID: 3316184]
  112. Science. 2013 Feb 15;339(6121):819-23 [PMID: 23287718]
  113. Nat Commun. 2023 Aug 2;14(1):4651 [PMID: 37532727]
  114. Front Plant Sci. 2017 Oct 18;8:1780 [PMID: 29093724]
  115. Nat Biotechnol. 2013 Aug;31(8):686-8 [PMID: 23929338]
  116. J Genet Eng Biotechnol. 2023 Jan 11;21(1):3 [PMID: 36630019]
  117. Plant Mol Biol. 2022 Mar;108(4-5):429-442 [PMID: 34792751]

Grants

  1. 32460412/National Natural Science Foundation of China
  2. 323MS073/Hainan Provincial Natural Science Foundation of China
  3. NKLTCB202402/Open Funds of National Key Laboratory for Tropical Crop Breeding

Word Cloud

Created with Highcharts 10.0.0cropstropicalbreedingCRISPR-Cas9ChinamajorfunctionsTropicalplantproductsoilpalmrubberbananasugarcanecassavapapayaefficiencyprogresssystemdeliverymutationdetectionapplicationproducergloballyboastingrichvarietiesdiverseaccounttwo-thirdsspeciescountryManywellknownpeopleirreplaceablepossessspecialsupplyimportantrawmaterialspeople'sdailylifeindustrialagriculturalproductionalsocontributeeconomicgrowthsubtropicalregionsHowevermodernmolecularseverelyhamperedbiologicalcharacteristicsgeneticcomplexityIssuespolyploidyheterozygosityvegetativepropagationlongjuvenileperiodslargesizesresulttimeconsuminglowslowconventionaldevelopmentgenome-editingtechnologiesbroughtnewwayemerginggene-editingtechnologywidelyusedplantsadoptedhighertargetingversatilityeaseusageapproachappliedreviewsummarizedpatternscropdiscussedexistingproblemsaddressedprospectsfutureapplicationsfieldprovidingreferencesrelevantstudiesApplicationsProspectsCRISPR/Cas9TechnologyBreedingMajorCropspattern

Similar Articles

Cited By

No available data.