Synthesis and Antioxidant Effects of Edaravone-Loaded MPEG-2000-DSPE Micelles in Rotenone-Induced PC12 Cell Model of Parkinson's Disease.

Xin Luo, Linshan Luo, Rong Lai, Yan Li, Hongyan Zhou, Xiting Li
Author Information
  1. Xin Luo: Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
  2. Linshan Luo: Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
  3. Rong Lai: Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
  4. Yan Li: Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
  5. Hongyan Zhou: Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
  6. Xiting Li: Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China. ORCID

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disorder globally that lacks any disease-modifying drug for prevention or treatment. Oxidative stress has been identified as one of the key pathogenic drivers of Parkinson's disease (PD). Edaravone, an approved free-radical scavenger, has proven to have potential against PD by targeting multiple key pathologies, including oxidative stress, focal mitochondria, and neuroinflammation. However, its bioavailability is potentially restricted due to its poor solubility and short half-life. This study aims to develop a simple and effective drug delivery system for edaravone to enhance its solubility, stability, and bioavailability to improve its neuroprotective efficacy. An MPEG-2000-DSPE-edaravone (MDE) micelle was prepared via solvent evaporation using MPEG-2000-DSPE as a carrier to encapsulate edaravone. The morphology, particle size, zeta potential, chemical structure, and edaravone loading of MDE were evaluated. We then investigated whether such targeted edaravone delivery could provide enhanced neuroprotection. A cell model of PD was established in PC12 cells through exposure to rotenone. The effects of MDE on PC12 cells treated with or without rotenone were evaluated using a cell counting kit-8, calcein acetoxymethyl ester (AM)-propidine iodide (PI) staining, and flow cytometry. Cell migration was evaluated using a wound healing assay. Additionally, the intracellular antioxidant study was performed using an ROS-level-detecting DCFH-DA probe, and the mitochondrial membrane potentials were evaluated using a JC-1 assay. MDE with a drug-loading content of 17.6% and an encapsulation efficiency of 92.8% was successfully prepared. The resultant MDE had a mean particle size of 112.97 �� 5.54 nm with a zeta potential of -42 mV. Cytotoxicity assays confirmed that the MDE (���200 ug/mL) exhibited promising cytocompatibility with no significant effect on cell viability, cell cycle regulation, or apoptosis levels. Likewise, compared with the free edaravone, no effect on cell migration was noted for MDE. MDE might be able to target edaravone delivery into PC12 cells, increasing the mitochondrial membrane potential and providing a significant local antioxidant effect. The results demonstrated that MPEG-2000-DSPE could be a promising material for enhancing edaravone's aqueous solubility, stability, and antioxidant effects. MDE could be a potential drug formulation for treating PD and other diseases in which oxidative stress plays a key role in pathogenesis.

Keywords

References

  1. Biomaterials. 2010 May;31(13):3657-66 [PMID: 20138662]
  2. CNS Neurosci Ther. 2013 Mar;19(3):163-9 [PMID: 23253171]
  3. J Mater Chem B. 2022 Jan 5;10(2):271-281 [PMID: 34897348]
  4. Pharm Res. 2013 Oct;30(10):2512-22 [PMID: 23314933]
  5. Anticancer Agents Med Chem. 2017;17(2):301-308 [PMID: 27225449]
  6. Lancet. 2024 Jan 20;403(10423):293-304 [PMID: 38245249]
  7. Neurosci Lett. 2013 May 24;543:72-7 [PMID: 23562504]
  8. Neurology. 2009 May 26;72(21 Suppl 4):S1-136 [PMID: 19470958]
  9. Cardiovasc Ther. 2008 Summer;26(2):101-14 [PMID: 18485133]
  10. Int J Mol Sci. 2013 Dec 16;14(12):24438-75 [PMID: 24351827]
  11. ACS Appl Bio Mater. 2022 Sep 9;: [PMID: 36083038]
  12. FEBS Lett. 1996 May 20;386(2-3):243-6 [PMID: 8647291]
  13. J Pharm Sci. 2014 Feb;103(2):730-42 [PMID: 24311389]
  14. Antioxidants (Basel). 2022 Jan 20;11(2): [PMID: 35204078]
  15. Molecules. 2012 Sep 26;17(10):11391-420 [PMID: 23014498]
  16. Oxid Med Cell Longev. 2023 Feb 21;2023:7643280 [PMID: 36865347]
  17. Polymers (Basel). 2022 May 31;14(11): [PMID: 35683912]
  18. Neurosci Lett. 2012 Dec 7;531(2):160-5 [PMID: 23127846]
  19. Oncotarget. 2017 Jun 20;8(25):39943-39944 [PMID: 28537921]
  20. PLoS One. 2011;6(6):e20677 [PMID: 21677777]
  21. Acta Biomater. 2017 Apr 15;53:100-108 [PMID: 28216297]
  22. Brain Res. 2013 Jun 26;1519:1-8 [PMID: 23648361]
  23. Discov Med. 2013 Jan;15(80):61-6 [PMID: 23375015]
  24. Drug Deliv. 2017 Nov;24(1):962-978 [PMID: 28633547]
  25. Yakugaku Zasshi. 2004 Mar;124(3):99-111 [PMID: 15049127]
  26. J Neurol Sci. 2014 Aug 15;343(1-2):115-9 [PMID: 24930399]
  27. Int J Pharm. 2016 Dec 30;515(1-2):490-500 [PMID: 27789367]
  28. Bioorg Med Chem. 2020 May 15;28(10):115463 [PMID: 32241621]
  29. Int J Pharm. 2016 Aug 20;510(1):232-9 [PMID: 27329674]
  30. Brain Sci. 2024 May 08;14(5): [PMID: 38790454]
  31. J Control Release. 2023 Jul;359:257-267 [PMID: 37290723]
  32. Front Pharmacol. 2021 May 31;12:691773 [PMID: 34135761]
  33. ACS Biomater Sci Eng. 2020 Sep 14;6(9):5069-5083 [PMID: 33455300]
  34. Cell. 2017 Nov 2;171(4):725 [PMID: 29100067]
  35. J Mol Neurosci. 2013 Jul;50(3):494-503 [PMID: 23393032]
  36. Nat Med. 2010 Jun;16(6):653-61 [PMID: 20495568]
  37. Drug Des Devel Ther. 2018 Jul 05;12:2051-2069 [PMID: 30013324]
  38. BMC Neurosci. 2008 Aug 01;9:75 [PMID: 18671880]
  39. Int J Mol Sci. 2023 Dec 14;24(24): [PMID: 38139306]
  40. Front Pharmacol. 2022 Apr 21;13:848529 [PMID: 35529450]
  41. Front Neurosci. 2020 Jun 09;14:494 [PMID: 32581676]
  42. Curr Med Chem. 2008;15(29):3068-80 [PMID: 19075654]
  43. J Nanobiotechnology. 2024 Apr 3;22(1):148 [PMID: 38570776]
  44. Neurosci Lett. 2019 Oct 15;711:134438 [PMID: 31422100]
  45. Mov Disord. 2011 May;26(6):1049-55 [PMID: 21626550]
  46. Int J Nanomedicine. 2017 May 31;12:4085-4109 [PMID: 28615938]
  47. Front Neuroanat. 2015 Jul 08;9:91 [PMID: 26217195]
  48. Methods Mol Biol. 2018;1782:357-381 [PMID: 29851012]
  49. Antioxidants (Basel). 2017 Jul 10;6(3): [PMID: 28698499]
  50. ACS Nano. 2018 Jul 24;12(7):6794-6805 [PMID: 29932327]
  51. Exp Neurol. 2008 Oct;213(2):448-55 [PMID: 18718468]

Grants

  1. 81700973/National Natural Science Foundation of China
  2. 201906385067/Chinese Scholarship Council

Word Cloud

Created with Highcharts 10.0.0MDEedaravonePDpotentialusingcellMPEG-2000-DSPEevaluatedPC12antioxidantParkinson'sdiseasedrugstresskeybioavailabilitysolubilitydeliverycellseffectoxidativestudystabilitypreparedparticlesizezetarotenoneeffectsCellmigrationassaymitochondrialmembranepromisingsignificantsecondcommonneurodegenerativedisordergloballylacksdisease-modifyingpreventiontreatmentOxidativeidentifiedonepathogenicdriversEdaravoneapprovedfree-radicalscavengerproventargetingmultiplepathologiesincludingfocalmitochondrianeuroinflammationHoweverpotentiallyrestrictedduepoorshorthalf-lifeaimsdevelopsimpleeffectivesystemenhanceimproveneuroprotectiveefficacyMPEG-2000-DSPE-edaravonemicelleviasolventevaporationcarrierencapsulatemorphologychemicalstructureloadinginvestigatedwhethertargetedprovideenhancedneuroprotectionmodelestablishedexposuretreatedwithoutcountingkit-8calceinacetoxymethylesterAM-propidineiodidePIstainingflowcytometrywoundhealingAdditionallyintracellularperformedROS-level-detectingDCFH-DAprobepotentialsJC-1drug-loadingcontent176%encapsulationefficiency928%successfullyresultantmean11297��554nm-42mVCytotoxicityassaysconfirmed���200ug/mLexhibitedcytocompatibilityviabilitycycleregulationapoptosislevelsLikewisecomparedfreenotedmightabletargetincreasingprovidinglocalresultsdemonstratedmaterialenhancingedaravone'saqueousformulationtreatingdiseasesplaysrolepathogenesisSynthesisAntioxidantEffectsEdaravone-LoadedMicellesRotenone-InducedModelDiseaseParkinson���s

Similar Articles

Cited By