ARSOD-YOLO: Enhancing Small Target Detection for Remote Sensing Images.

Yijuan Qiu, Xiangyue Zheng, Xuying Hao, Gang Zhang, Tao Lei, Ping Jiang
Author Information
  1. Yijuan Qiu: National Laboratory on Adaptive Optics, Chengdu 610209, China. ORCID
  2. Xiangyue Zheng: National Laboratory on Adaptive Optics, Chengdu 610209, China. ORCID
  3. Xuying Hao: National Laboratory on Adaptive Optics, Chengdu 610209, China.
  4. Gang Zhang: National Laboratory on Adaptive Optics, Chengdu 610209, China. ORCID
  5. Tao Lei: National Laboratory on Adaptive Optics, Chengdu 610209, China. ORCID
  6. Ping Jiang: National Laboratory on Adaptive Optics, Chengdu 610209, China.

Abstract

Remote sensing images play a vital role in domains including environmental monitoring, agriculture, and autonomous driving. However, the detection of targets in remote sensing images remains a challenging task. This study introduces innovative methods to enhance feature extraction, feature fusion, and model optimization. The Adaptive Selective Feature Enhancement Module (AFEM) dynamically adjusts feature weights using GhostModule and sigmoid functions, thereby enhancing the accuracy of small target detection. Moreover, the Adaptive Multi-scale Convolution Kernel Feature Fusion Module (AKSFFM) enhances feature fusion through multi-scale convolution operations and attention weight learning mechanisms. Moreover, our proposed ARSOD-YOLO optimized the network architecture, component modules, and loss functions based on YOLOv8, enhancing outstanding small target detection capabilities while preserving model efficiency. We conducted experiments on the VEDAI and AI-TOD datasets, showcasing the excellent performance of ARSOD-YOLO. Our algorithm achieved an mAP50 of 74.3% on the VEDAI dataset, surpassing the YOLOv8 baseline by 3.1%. Similarly, on the AI-TOD dataset, the mAP50 reached 47.8%, exceeding the baseline network by 6.1%.

Keywords

References

  1. Sensors (Basel). 2024 May 06;24(9): [PMID: 38733059]
  2. IEEE Trans Image Process. 2023 Feb 22;PP: [PMID: 37027628]
  3. IEEE Trans Cybern. 2022 Aug;52(8):8574-8586 [PMID: 34437079]
  4. IEEE Trans Pattern Anal Mach Intell. 2023 Nov;45(11):13715-13729 [PMID: 37467086]
  5. Sensors (Basel). 2020 Jul 31;20(15): [PMID: 32751868]
  6. IEEE Trans Cybern. 2023 May;53(5):3153-3164 [PMID: 35560096]

Word Cloud

Created with Highcharts 10.0.0featuredetectionsensingfusionsmallRemoteimagesremotemodelAdaptiveFeatureModulefunctionsenhancingtargetMoreoverARSOD-YOLOnetworkYOLOv8VEDAIAI-TODmAP50datasetbaseline1%objectplayvitalroledomainsincludingenvironmentalmonitoringagricultureautonomousdrivingHowevertargetsremainschallengingtaskstudyintroducesinnovativemethodsenhanceextractionoptimizationSelectiveEnhancementAFEMdynamicallyadjustsweightsusingGhostModulesigmoidtherebyaccuracyMulti-scaleConvolutionKernelFusionAKSFFMenhancesmulti-scaleconvolutionoperationsattentionweightlearningmechanismsproposedoptimizedarchitecturecomponentmoduleslossbasedoutstandingcapabilitiespreservingefficiencyconductedexperimentsdatasetsshowcasingexcellentperformancealgorithmachieved743%surpassing3Similarlyreached478%exceeding6ARSOD-YOLO:EnhancingSmallTargetDetectionSensingImages

Similar Articles

Cited By

No available data.