Effect of a Modern Palaeolithic Diet in Combination with a Sprint Interval Training on Metabolic and Performance-Related Parameters in Male Athletes: A Pilot Trial.

Denise Zdzieblik, Tobias Waldvogel, Anna Zierke, Albert Gollhofer, Daniel K��nig
Author Information
  1. Denise Zdzieblik: Department for Nutrition, Institute for Sports and Sports Science, University of Freiburg, Freiburg, Germany. ORCID
  2. Tobias Waldvogel: Department for Nutrition, Institute for Sports and Sports Science, University of Freiburg, Freiburg, Germany.
  3. Anna Zierke: Department for Nutrition, Institute for Sports and Sports Science, University of Freiburg, Freiburg, Germany.
  4. Albert Gollhofer: Department for Nutrition, Institute for Sports and Sports Science, University of Freiburg, Freiburg, Germany.
  5. Daniel K��nig: Centre for Sports Science and University Sports, Department for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria.

Abstract

Background: Although a palaeolithic diet promotes healthier food choices that aid in weight management and reduce cardiovascular risks, its effectiveness in endurance sports is still debated due to its typically low carbohydrate content.
Objective: This study examined the impact of a 6-week palaeolithic diet (PD-G) versus a mixed diet (MD-G), both paired with Sprint interval training (SIT), on various metabolic and performance-related parameters.
Methods: Body composition, time trial (TT) performance (covered distance during a 60-minute run on a 400-metre track) and changes in metabolic (respiratory exchange ratio [RER], substrate oxidation rates) and performance-related (time at ventilatory threshold [VT] and respiratory compensation point [RCP], maximum oxygen uptake (V��O) and time to exhaustion [TTE]) parameters during a ramp incremental running test were assessed in 14 male endurance athletes. Additionally, Gastrointestinal Quality of Life index (GLQI) and perceptual responses to the diets [visual analogue scale (VAS)] were measured.
Results: After 6���weeks, both groups improved in TTE and distance covered in the 60-minute TT, without significant group differences. In the PD-G body weight, fat mass and systolic and diastolic blood pressure decreased. At rest, RER and carbohydrate oxidation significantly decreased in the PD-G, with a tendency towards significance during exercise, while changes in fat oxidation rates were not statistically significant at rest and throughout the exercise test; in contrast, the MD-G exhibited smaller changes across these parameters.
Conclusion: In this investigation, a palaeolithic diet in combination with SIT appeared to have positive effects on fat mass, blood pressure and substrate utilization under resting conditions in a group of male endurance athletes. However, based on the current findings for performance metrics, a palaeolithic diet cannot be recommended unreservedly for healthy endurance athletes.

Keywords

References

  1. Can J Sport Sci. 1991 Mar;16(1):23-9 [PMID: 1645211]
  2. J Appl Physiol (1985). 2005 Aug;99(2):707-14 [PMID: 15831796]
  3. Sports Med. 2014 Jul;44(7):1005-17 [PMID: 24743927]
  4. Nutr J. 2016 Apr 02;15:35 [PMID: 27039383]
  5. J Gastrointestin Liver Dis. 2015 Sep;24(3):359-68 [PMID: 26405708]
  6. Sports Med. 2014 May;44 Suppl 1:S79-85 [PMID: 24791919]
  7. Obesity (Silver Spring). 2017 May;25(5):892-900 [PMID: 28440046]
  8. Diabetologia. 2007 Sep;50(9):1795-1807 [PMID: 17583796]
  9. Adv Nutr. 2019 Jul 1;10(4):634-646 [PMID: 31041449]
  10. Nutrients. 2019 Aug 21;11(9): [PMID: 31438636]
  11. Cochrane Database Syst Rev. 2007 Jul 18;(3):CD005105 [PMID: 17636786]
  12. J Am Heart Assoc. 2019 Jan 22;8(2):e010634 [PMID: 30652528]
  13. Br J Surg. 1995 Feb;82(2):216-22 [PMID: 7749697]
  14. Br J Nutr. 2000 Mar;83(3):207-17 [PMID: 10884708]
  15. Eur J Clin Nutr. 2002 Mar;56 Suppl 1:S42-52 [PMID: 11965522]
  16. Eur J Clin Nutr. 2018 Jan;72(1):124-129 [PMID: 28901333]
  17. Med Sci Sports Exerc. 2022 Dec 1;54(12):1991-2004 [PMID: 35881924]
  18. Res Nurs Health. 2008 Apr;31(2):180-91 [PMID: 18183564]
  19. Gut. 2016 Jan;65(1):169-78 [PMID: 26078292]
  20. J Am Coll Cardiol. 2008 Jan 22;51(3):249-55 [PMID: 18206731]
  21. Pediatr Int. 2018 Apr;60(4):329-333 [PMID: 29341364]
  22. Int J Sports Med. 2005 Feb;26 Suppl 1:S28-37 [PMID: 15702454]
  23. Lancet. 2011 Aug 27;378(9793):826-37 [PMID: 21872751]
  24. Nutrients. 2021 Mar 21;13(3): [PMID: 33801152]
  25. Br J Nutr. 2012 Aug;108 Suppl 1:S81-90 [PMID: 22916819]
  26. Am J Med. 1988 Apr;84(4):739-49 [PMID: 3135745]
  27. Nutrients. 2015 Aug 31;7(9):7285-97 [PMID: 26404362]
  28. Sports Med. 2024 Nov;54(11):2817-2840 [PMID: 39003682]
  29. Int J Sport Nutr Exerc Metab. 2019 Feb 26;29(4):406���410 [PMID: 30507268]
  30. J Ayurveda Integr Med. 2024 Jan-Feb;15(1):100819 [PMID: 38181707]
  31. Nutrients. 2018 Mar 17;10(3): [PMID: 29562613]
  32. Am J Clin Nutr. 2006 Aug;84(2):354-60 [PMID: 16895883]
  33. Front Nutr. 2022 Apr 11;9:802374 [PMID: 35479739]
  34. Compr Rev Food Sci Food Saf. 2021 Mar;20(2):2081-2105 [PMID: 33559386]
  35. Obes Rev. 2019 Aug;20(8):1132-1147 [PMID: 31006978]
  36. J Sci Med Sport. 2019 Aug;22(8):941-947 [PMID: 30733142]
  37. Phys Sportsmed. 2016 Sep;44(3):242-51 [PMID: 27077234]
  38. Nutr Clin Pract. 2010 Dec;25(6):594-602 [PMID: 21139123]
  39. Am J Epidemiol. 2011 Feb 15;173(4):448-58 [PMID: 21242302]
  40. J Appl Physiol (1985). 2009 Nov;107(5):1519-25 [PMID: 19713430]
  41. Am J Clin Nutr. 2005 Feb;81(2):341-54 [PMID: 15699220]
  42. J Int Soc Sports Nutr. 2017 Aug 29;14:33 [PMID: 28919842]
  43. Scand J Med Sci Sports. 2013 Dec;23(6):e341-52 [PMID: 23889316]
  44. Int J Sports Med. 2005 Feb;26 Suppl 1:S38-48 [PMID: 15702455]
  45. Br J Nutr. 2003 Dec;90(6):1049-56 [PMID: 14641964]
  46. J Cardiopulm Rehabil. 1998 Nov-Dec;18(6):438-44 [PMID: 9857276]
  47. Nutr Res Rev. 2021 Jun;34(1):78-106 [PMID: 32482184]
  48. Sports Med. 2010 Feb 1;40(2):95-111 [PMID: 20092364]
  49. Appl Physiol Nutr Metab. 2011 Feb;36(1):12-22 [PMID: 21326374]
  50. Mayo Clin Proc. 2004 Jan;79(1):101-8 [PMID: 14708953]
  51. Sports Med. 2022 Nov;52(11):2775-2795 [PMID: 35829994]
  52. Diabetes Metab Res Rev. 2017 Jan;33(1): [PMID: 27235022]
  53. Sports Med. 2014 May;44 Suppl 1:S87-96 [PMID: 24791920]
  54. Med Sci Sports Exerc. 2015 Nov;47(11):2473-9 [PMID: 26473759]
  55. Sports Med. 2014 Feb;44(2):269-79 [PMID: 24129784]
  56. Sports Med. 2015 Nov;45 Suppl 1:S33-49 [PMID: 26553488]
  57. Am J Clin Nutr. 2015 Oct;102(4):922-32 [PMID: 26269362]
  58. Clin Endocrinol (Oxf). 2004 Jul;61(1):123-30 [PMID: 15212654]

Word Cloud

Created with Highcharts 10.0.0dietendurancepalaeolithicoxidationfatPD-GparameterstimeperformancechangesrespiratorytestathletesweightcarbohydrateMD-GSprintintervaltrainingSITmetabolicperformance-relatedTTcovereddistance60-minuteexchangeratiosubstrateratesrampincrementalmalesignificantgroupmassbloodpressuredecreasedrestexercisePalaeolithicBackground:AlthoughpromoteshealthierfoodchoicesaidmanagementreducecardiovascularriskseffectivenesssportsstilldebatedduetypicallylowcontentObjective:studyexaminedimpact6-weekversusmixedpairedvariousMethods:Bodycompositiontrialrun400-metretrack[RER]ventilatorythreshold[VT]compensationpoint[RCP]maximumoxygenuptakeV��Oexhaustion[TTE]runningassessed14AdditionallyGastrointestinalQualityLifeindexGLQIperceptualresponsesdiets[visualanaloguescaleVAS]measuredResults:6���weeksgroupsimprovedTTEwithoutdifferencesbodysystolicdiastolicRERsignificantlytendencytowardssignificancestatisticallythroughoutcontrastexhibitedsmalleracrossConclusion:investigationcombinationappearedpositiveeffectsutilizationrestingconditionsHoweverbasedcurrentfindingsmetricsrecommendedunreservedlyhealthyEffectModernDietCombinationIntervalTrainingMetabolicPerformance-RelatedParametersMaleAthletes:PilotTrialsprint

Similar Articles

Cited By