A study of land cover and land surface temperature changes triggered by tropical cyclone "Titli".

Srikanth Kadali, Debadatta Swain, Dikshika Mahapatra
Author Information
  1. Srikanth Kadali: School of Earth, Ocean and Climate Sciences, IIT Bhubaneswar, Bhubaneswar, 752050, Odisha, India.
  2. Debadatta Swain: School of Earth, Ocean and Climate Sciences, IIT Bhubaneswar, Bhubaneswar, 752050, Odisha, India. dswain@iitbbs.ac.in. ORCID
  3. Dikshika Mahapatra: School of Earth, Ocean and Climate Sciences, IIT Bhubaneswar, Bhubaneswar, 752050, Odisha, India.

Abstract

The intensity and frequency of tropical cyclones (TC) are on the rise due to climate change, resulting in severe damage to coastal regions. Hence, the mitigation of socioeconomic and environmental consequences of cyclones has attained paramount importance in the recent years. In this study, the rapid impact of a very severe cyclonic storm "Titli" on land cover (LC) changes were evaluated using Moderate Resolution Imaging Spectroradiometer (MODIS) and high-resolution Sentinel-2 data. The cyclonic event caused substantial modifications in land use and land cover with nearly 46% decrease in dense vegetation, 129% increase in fallow land, and 111% increase in water body, over the study region. Widespread damage (dense to less dense vegetation) was evident on the left side of the cyclone track as compared to the right. The analysis revealed a 98.3% decrease in dense vegetation, marked by a decrease in the normalized difference vegetation index (NDVI) from 0.73 to 0.44 over the landfall region. This NDVI decrease continued for nearly 3 months before the onset of vegetation regrowth. Change in vegetation into other LCs over the landfall region resulted in an increase of the mean daytime land surface temperature by ~ 6 °C. The analysis highlights the magnitude of spatiotemporal scale damages to LULC and consequent loss in seasonality that can be ushered in by a single short-duration extreme weather event like TC and thus emphasizes the need for well-formulated mitigation strategies.

Keywords

References

  1. Addo, K. A., Jayson-Quashigah, P. N., & Kufogbe, K. S. (2012). Quantitative analysis of shoreline change using medium resolution satellite imagery in Keta. Ghana. Marine Science, 1(1), 1–9. https://doi.org/10.5923/j.ms.20110101.01 [DOI: 10.5923/j.ms.20110101.01]
  2. Albert, J., Krishnan, A., Bhaskaran, P. K., & Singh, K. S. (2022). Role and influence of key atmospheric parameters in large-scale environmental flow associated with tropical cyclogenesis and ENSO in the North Indian Ocean basin. Climate Dynamics, 58, 17–34. https://doi.org/10.1007/s00382-021-05885-8 [DOI: 10.1007/s00382-021-05885-8]
  3. Anasuya, B., Swain, D., & Vinoj, V. (2019). Rapid urbanization and associated impacts on land surface temperature changes over Bhubaneswar urban district, India. Environmental Monitoring and Assessment, 191(S3). https://doi.org/10.1007/s10661-019-7699-2
  4. Bertinelli, L., Mohan, P., & Strobl, E. (2016). Hurricane damage risk assessment in the Caribbean: An analysis using synthetic hurricane events and nightlight imagery. Ecological Economics: The Journal of the International Society for Ecological Economics, 124, 135–144. https://doi.org/10.1016/j.ecolecon.2016.02.004 [DOI: 10.1016/j.ecolecon.2016.02.004]
  5. Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026 [DOI: 10.1016/j.rse.2011.11.026]
  6. Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201. https://doi.org/10.1016/s0034-4257(01)00295-4 [DOI: 10.1016/s0034-4257(01)00295-4]
  7. Gao, H., Jia, G., & Fu, Y. (2020). Identifying and quantifying pixel-level uncertainty among major satellite derived global land cover products. Journal of Meteorological Research, 34(4), 806–821. https://doi.org/10.1007/s13351-020-9183-x [DOI: 10.1007/s13351-020-9183-x]
  8. Gardiner, B. (2021). Wind damage to forests and trees: A review with an emphasis on planted and managed forests. Journal of Forest Research, 26(4), 248–266. https://doi.org/10.1080/13416979.2021.1940665 [DOI: 10.1080/13416979.2021.1940665]
  9. Gogoi, P. P., Vinoj, V., Swain, D., Roberts, G., Dash, J., & Tripathy, S. (2019). Land use and land cover change effect on surface temperature over eastern India. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-45213-z
  10. Goward, S. N., Markham, B., Dye, D. G., Dulaney, W., & Yang, J. (1991). Normalized difference vegetation index measurements from the advanced very high resolution radiometer. Remote Sensing of Environment, 35(2–3), 257–277. https://doi.org/10.1016/0034-4257(91)90017-z [DOI: 10.1016/0034-4257(91)90017-z]
  11. Goyal, P. K. (2022). Cyclonic damage assessment of rural houses for the east coastal region of India. Progress in Disaster Science, 15(100238). https://doi.org/10.1016/j.pdisas.2022.100238 [DOI: 10.1016/j.pdisas.2022.100238]
  12. Guha, S., & Govil, H. (2020). Land surface temperature and normalized difference vegetation index relationship: A seasonal study on a tropical city. Applied Sciences, 2(10). https://doi.org/10.1007/s42452-020-03458-8
  13. Hanley, M. E., Bouma, T. J., & Mossman, H. L. (2020). The gathering storm: Optimizing management of coastal ecosystems in the face of a climate-driven threat. Annals of Botany, 125(2), 197–212. https://doi.org/10.1093/aob/mcz204 [DOI: 10.1093/aob/mcz204]
  14. Haque, A., & Jahan, S. (2016). Regional impact of Cyclone Sidr in Bangladesh: A multi-sector analysis. International Journal of Disaster Risk Science, 7(3), 312–327. https://doi.org/10.1007/s13753-016-0100-y [DOI: 10.1007/s13753-016-0100-y]
  15. Hu, T., & Smith, R. (2018). The impact of hurricane Maria on the vegetation of Dominica and Puerto Rico using multispectral remote sensing. Remote Sensing, 10(6), 827. https://doi.org/10.3390/rs10060827 [DOI: 10.3390/rs10060827]
  16. IMD. (2018). Odisha situation report: Very severe cyclonic storm “Titli”, Date: 11.10.2018, 3.30 PM. Retrieved January 22, 2022, from https://reliefweb.int/report/india/odisha-situation-report-very-severe-cyclonic-storm-titli-date-11102018-330-pm .
  17. IMD. (2019). Very severe cyclonic storm “Titli” over EastCentral Bay of Bengal (08–13 October 2018). Retrieved March 05, 2022, from https://rsmcnewdelhi.imd.gov.in/uploads/report/26/26_dd893c_Titli.pdf .
  18. Janssen, L. L. F., & Van Der Wel, F. J. M. (1994). Accuracy assessment of satellite derived land-cover data: A review. Photogrammetric Engineering and Remote Sensing, 60, 419–426.
  19. Kanowski, J., Catterall, C. P., Mckenna, S. G., & Jensen, R. (2008). Impacts of cyclone Larry on the vegetation structure of timber plantations, restoration plantings and rainforest on the Atherton Tableland. Australia. Austral Ecology, 33(4), 485–494. https://doi.org/10.1111/j.1442-9993.2008.01903.x [DOI: 10.1111/j.1442-9993.2008.01903.x]
  20. Kantamaneni, K., Panneer, S., Krishnan, A., Shekhar, S., Bhat, L., K., A., & Rice, L. (2022). Appraisal of climate change and cyclone trends in Indian coastal states: A systematic approach towards climate action. Arabian Journal of Geosciences, 15(9). https://doi.org/10.1007/s12517-022-10076-8
  21. Konda, V. G. R. K., Chejarla, V. R., Mandla, V. R., Voleti, V., & Chokkavarapu, N. (2018). Vegetation damage assessment due to Hudhud cyclone based on NDVI using Landsat-8 satellite imagery. Arabian Journal of Geosciences, 11(2). https://doi.org/10.1007/s12517-017-3371-8
  22. Kong, D., Miao, C., Wu, J., Zheng, H., & Wu, S. (2020). Time lag of vegetation growth on the Loess Plateau in response to climate factors: Estimation, distribution, and influence. The Science of the Total Environment, 744,. https://doi.org/10.1016/j.scitotenv.2020.140726 [DOI: 10.1016/j.scitotenv.2020.140726]
  23. Kron, W. (2000). Natural disasters: Lessons from the past – Concerns for the future. The Geneva Papers on Risk and Insurance Issues and Practice, 25(4), 570–581. https://doi.org/10.1111/1468-0440.00083 [DOI: 10.1111/1468-0440.00083]
  24. Laurance, W. F., & Curran, T. J. (2008). Impacts of wind disturbance on fragmented tropical forests: A review and synthesis. Austral Ecology, 33(4), 399–408. https://doi.org/10.1111/j.1442-9993.2008.01895.x [DOI: 10.1111/j.1442-9993.2008.01895.x]
  25. Leicester, R. H., Bubb, C. T. J., Dormant, C., & Beresford, F. D. (1980). An assessment of potential cyclone damage to dwellings in Australia. In Wind Engineering (pp. 23–36). https://doi.org/10.1016/B978-1-4832-8367-8.50009-7
  26. Miralles, D. G., Gentine, P., Seneviratne, S. I., & Teuling, A. J. (2018). Land–atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Annals of the New York Academy of Sciences, 1436(1), 19–35. https://doi.org/10.1111/nyas.13912 [DOI: 10.1111/nyas.13912]
  27. Munthali, M., Botai, J., & Nerhene Abiodun, A. (2019). Multi-temporal analysis of land use and land cover change detection for Dedza district of Malawi using geospatial techniques. International Journal of Applied Engineering Research, 14, 1151–1162.
  28. Nandi, G., Neogy, S., Roy, A. K., & Datta, D. (2020). Immediate disturbances induced by tropical cyclone Fani on the coastal forest landscape of eastern India: A geospatial analysis. Remote Sensing Applications Society and Environment, 20,. https://doi.org/10.1016/j.rsase.2020.100407 [DOI: 10.1016/j.rsase.2020.100407]
  29. Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science (New York, N.Y.), 328(5985), 1517–1520. https://doi.org/10.1126/science.1185782
  30. Nicholson, C. C., & Egan, P. A. (2020). Natural hazard threats to pollinators and pollination. Global Change Biology, 26(2), 380–391. https://doi.org/10.1111/gcb.14840 [DOI: 10.1111/gcb.14840]
  31. Owen, T. W., Carlson, T. N., & Gillies, R. R. (1998). An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. International Journal of Remote Sensing, 19(9), 1663–1681. https://doi.org/10.1080/014311698215171 [DOI: 10.1080/014311698215171]
  32. Paling, E. I., Kobryn, H. T., & Humphreys, G. (2008). Assessing the extent of mangrove change caused by cyclone Vance in the eastern Exmouth Gulf, northwestern Australia. Estuarine, Coastal and Shelf Science, 77(4), 603–613. https://doi.org/10.1016/j.ecss.2007.10.019 [DOI: 10.1016/j.ecss.2007.10.019]
  33. Pandey, A., Mondal, A., Guha, S., Upadhyay, P. K., & Singh, D. (2022). Land use status and its impact on land surface temperature in Imphal city, India. Geology Ecology and Landscapes, 1–15. https://doi.org/10.1080/24749508.2022.2131962
  34. Paola, J. D., & Schowengerdt, R. A. (1995). A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Transactions on Geoscience and Remote Sensing: A Publication of the IEEE Geoscience and Remote Sensing Society, 33(4), 981–996. https://doi.org/10.1109/36.406684 [DOI: 10.1109/36.406684]
  35. Paul, A., & Rahman, M. (2006). Cyclone mitigation perspectives in the islands of Bangladesh: A case of Sandwip and Hatia islands. Coastal Management: An International Journal of Marine Environment, Resources, Law, and Society, 34(2), 199–215. https://doi.org/10.1080/08920750500531371 [DOI: 10.1080/08920750500531371]
  36. Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J., Mouton, F., & Nordbeck, O. (2012). Global trends in tropical cyclone risk. Nature Climate Change, 2(4), 289–294. https://doi.org/10.1038/nclimate1410 [DOI: 10.1038/nclimate1410]
  37. Priyadarshini, N. K., Kumar, M., Rahaman, S. A., & Nitheshnirmal, S. (2018). A comparative study of advanced land use/land cover classification algorithms using Sentinel-2 data. ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, XLII–5, 665–670. https://doi.org/10.5194/isprs-archives-xlii-5-665-2018
  38. Rajeev, A., & Mishra, V. (2022). Observational evidence of increasing compound tropical cyclone‐moist heat extremes in India. Earth’s Future, 10(12). https://doi.org/10.1029/2022ef002992
  39. Ramos-Scharrón, C. E., & Arima, E. (2019). Hurricane María’s precipitation signature in Puerto Rico: A conceivable presage of rains to come. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-52198-2
  40. Sethi, S. S., Vinoj, V., Gogoi, P. P., Landu, K., Swain, D., & Mohanty, U. C. (2023). Spatio-temporal evolution of surface urban heat island over Bhubaneswar-Cuttack twin city: A rapidly growing tropical urban complex in eastern India. Environment Development and Sustainability, 26(6), 15381–15402. https://doi.org/10.1007/s10668-023-03254-5 [DOI: 10.1007/s10668-023-03254-5]
  41. Sharma, S. (2022). Cyclone risk mitigation- India perspective. The National Disaster Management Authority Gov.In. Retrieved March 21, 2024, from https://ndma.gov.in/sites/default/files/Newsletter-Aug22/Cyclone%20Risk%20Mitigation-%20India%20perspective.pdf
  42. Sisodia, P. S., Tiwari, V., & Kumar, A. (2014). Analysis of supervised maximum likelihood classification for remote sensing image. International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014). https://doi.org/10.1109/ICRAIE.2014.6909319
  43. Srikanth, K., & Swain, D. (2022). Urbanization and land surface temperature changes over Hyderabad, a semi-arid mega city in India. Remote Sensing Applications Society and Environment, 28(100858). https://doi.org/10.1016/j.rsase.2022.100858 [DOI: 10.1016/j.rsase.2022.100858]
  44. Still, C., Powell, R., Aubrecht, D., Kim, Y., Helliker, B., Roberts, D., Richardson, A. D., & Goulden, M. (2019). Thermal imaging in plant and ecosystem ecology: Applications and challenges. Ecosphere (Washington, D.C), 10(6). https://doi.org/10.1002/ecs2.2768
  45. Story, M., & Congalton, R. G. (1986). Accuracy assessment: A user’s perspective. Photogrammetric Engineering and Remote Sensing, 52, 397–399.
  46. Svejkovsky, J., Ogurcak, D. E., Ross, M. S., & Arkowitz, A. (2020). Satellite image-based time series observations of vegetation response to hurricane Irma in the lower Florida keys. Estuaries and Coasts: Journal of the Estuarine Research Federation, 43(5), 1058–1069. https://doi.org/10.1007/s12237-020-00701-8 [DOI: 10.1007/s12237-020-00701-8]
  47. Swain, D., Roberts, G. J., Dash, J., Lekshmi, K., Vinoj, V., & Tripathy, S. (2017). Impact of rapid urbanization on the city of Bhubaneswar, India. Proceedings of the National Academy of Sciences, India. Section A. Physical Sciences, 87(4), 845–853. https://doi.org/10.1007/s40010-017-0453-7
  48. Taillie, P. J., Roman-Cuesta, R., Lagomasino, D., Cifuentes-Jara, M., Fatoyinbo, T., Ott, L. E., & Poulter, B. (2020). Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environmental Research Letters, 15(6). https://doi.org/10.1088/1748-9326/ab82cf [DOI: 10.1088/1748-9326/ab82cf]
  49. Wan, Z., & Dozier, J. (1996). A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing: A Publication of the IEEE Geoscience and Remote Sensing Society, 34(4), 892–905. https://doi.org/10.1109/36.508406 [DOI: 10.1109/36.508406]
  50. Wan, Z., Hook, S., & Hulley, G. (2015). MYD11A2 MODIS/Aqua Land Surface Temperature/emissivity 8-day L3 global 1km SIN Grid V006. NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MYD11A2.006
  51. Yang, S., & Cossuth, J. (2016). Satellite remote sensing of tropical cyclones. In Recent Developments in Tropical Cyclone Dynamics, Prediction, and Detection. InTech. https://doi.org/10.5772/64114
  52. Zhao, B., Mao, K., Cai, Y., Shi, J., Li, Z., Qin, Z., Meng, X., Shen, X., & Guo, Z. (2020). A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003 to 2017. Earth System Science Data, 12(4), 2555–2577. https://doi.org/10.5194/essd-12-2555-2020 [DOI: 10.5194/essd-12-2555-2020]
  53. Zuazo, V. H. D., & Pleguezuelo, C. R. R. (2008). Soil-erosion and runoff prevention by plant covers. A Review. Agronomy for Sustainable Development, 28(1), 65–86. https://doi.org/10.1051/agro:2007062 [DOI: 10.1051/agro]

MeSH Term

Cyclonic Storms
Environmental Monitoring
Temperature
Climate Change
Satellite Imagery

Word Cloud

Created with Highcharts 10.0.0landvegetationcoverdecreasedensestudyincreaseregioncycloneNDVIsurfacetemperaturetropicalcyclonesTCseveredamagemitigationimpactcyclonic"Titli"changeseventusenearlyanalysis0landfallLandintensityfrequencyrisedueclimatechangeresultingcoastalregionsHencesocioeconomicenvironmentalconsequencesattainedparamountimportancerecentyearsrapidstormLCevaluatedusingModerateResolutionImagingSpectroradiometerMODIShigh-resolutionSentinel-2datacausedsubstantialmodifications46%129%fallow111%waterbodyWidespreadlessevidentleftsidetrackcomparedrightrevealed983%markednormalizeddifferenceindex7344continued3 monthsonsetregrowthChangeLCsresultedmeandaytimeby ~ 6 °ChighlightsmagnitudespatiotemporalscaledamagesLULCconsequentlossseasonalitycanusheredsingleshort-durationextremeweatherlikethusemphasizesneedwell-formulatedstrategiestriggeredCycloneTropical

Similar Articles

Cited By