Endometrial carcinoma (EC) is one of the most common gynecological malignant tumors, but its underlying pathogenic mechanisms are largely obscure. Interleukin-22 (IL-22), one cytokine in the tumor immune microenvironment, was reported to be associated with carcinoma progression. Here, we aimed to investigate the regulation of IL-22 in endometrial carcinoma. Enzyme-linked immunosorbent assay (ELISA) analysis of IL-22 was done in 27 controls and 51 patients with EC. We examined the proliferative potential, cycle progression, and signaling pathways modulated by IL-22 in EC cells. Western blot analysis was performed to investigate the expression of proliferative and cycle-related proteins in EC cells. The effect of IL-22 mediated by interleukin-22 receptor alpha 1 (IL-22RA1) was examined using cell transfection with small interfering RNA (siRNA). In addition, a xenograft tumor model was performed to assess the effect of IL-22 in vivo. We demonstrated significant up-regulation of serum IL-22 concentrations in EC patients (42.59��������23.72 pg/mL) compared to the control group (27.47��������8.29 pg/mL). High levels of IL-22 concentrations appear to correlate with malignant clinicopathological features of EC. Treatment with IL-22 promoted cell proliferation and G1/S phase progression in Ishikawa and HEC-1B cells. Western blot analysis revealed that c-Myc, cyclin E1, cyclin-dependent kinase (CDK)2, cyclin D1, CDK4, CDK6, p-extracellular signal-regulated kinase1/2 (p-ERK1/2), and p-p38 were highly expressed in EC cells exposed to IL-22. Moreover, in the EC mice model, we found that giving exogenous IL-22 increased tumor volume and weight. Immunohistochemistry showed that intra-tumor Ki-67 expression was up-regulated upon IL-22 treatment. The IL-22-mediated changes in cell proliferation, cycle progression, and protein expression can be effectively inhibited by the ERK1/2 inhibitor U0126 and the p38 inhibitor SB202190. In addition, the role of IL-22 in EC is receptor-dependent. Our findings suggest that IL-22 promotes endometrial carcinoma cell proliferation and G1/S phase progression by activating ERK1/2 and p38 signaling. Therefore, IL-22 may represent a potential therapeutic target for the treatment of endometrial carcinoma.
Siegel RL, Giaquinto AN, Jemal A (2024) Cancer statistics, 2024. CA Cancer J Clin 74(1):12���49
[DOI: 10.3322/caac.21820]
Crosbie EJ, Kitson SJ, McAlpine JN, Mukhopadhyay A, Powell ME, Singh N (2022) Endometrial cancer. Lancet 399(10333):1412���1428
[DOI: 10.1016/S0140-6736(22)00323-3]
Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T et al (2022) Immunotherapy: reshape the tumor immune microenvironment. Front Immunol 13:844142
[DOI: 10.3389/fimmu.2022.844142]
Li J, Huang L, Zhao H, Yan Y, Lu J (2020) The role of interleukins in colorectal cancer. Int J Biol Sci 16(13):2323���2339
[DOI: 10.7150/ijbs.46651]
Zang Y, Li H, Liu S, Zhao R, Zhang K, Zang Y et al (2022) The roles and clinical applications of interleukins in endometrial carcinoma. Front Oncol 12:1001693
[DOI: 10.3389/fonc.2022.1001693]
Dumoutier L, Van Roost E, Colau D, Renauld JC (2000) Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc Natl Acad Sci U S A 97(18):10144���10149
[DOI: 10.1073/pnas.170291697]
Xie MH, Aggarwal S, Ho WH, Foster J, Zhang Z, Stinson J et al (2000) Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem 275(40):31335���31339
[DOI: 10.1074/jbc.M005304200]
Dumoutier L, Van Roost E, Ameye G, Michaux L, Renauld JC (2000) IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes. Genes Immun 1(8):488���494
[DOI: 10.1038/sj.gene.6363716]
Wu Y, Min J, Ge C, Shu J, Tian D, Yuan Y et al (2020) Interleukin 22 in liver injury, inflammation and cancer. Int J Biol Sci 16(13):2405���2413
[DOI: 10.7150/ijbs.38925]
Dudakov JA, Hanash AM, van den Brink MRM (2015) Interleukin-22: immunobiology and pathology. Annu Rev Immunol 33:747���785
[DOI: 10.1146/annurev-immunol-032414-112123]
Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP et al (2001) Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta ) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J Biol Chem 276(4):2725���2732
[DOI: 10.1074/jbc.M007837200]
Zhao N, Liu C, Li N, Zhou S, Guo Y, Yang S et al (2023) Role of Interleukin-22 in ulcerative colitis. Biomed Pharmacother 159:114273
[DOI: 10.1016/j.biopha.2023.114273]
Sabat R, Ouyang W, Wolk K (2014) Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov 13(1):21���38
[DOI: 10.1038/nrd4176]
Rui J, Chunming Z, Binbin G, Na S, Shengxi W, Wei S (2017) IL-22 promotes the progression of breast cancer through regulating HOXB-AS5. Oncotarget 8(61):103601���103612
[DOI: 10.18632/oncotarget.22063]
Mielczarek-Palacz A, Kruszniewska-Rajs C, Smycz-Kuba��ska M, Strzelczyk J, Szanecki W, Witek A et al (2021) The assessment of IL-21 and IL-22 at the mRNA level in tumor tissue and protein concentration in serum and peritoneal fluid in patients with ovarian cancer. J Clin Med. https://doi.org/10.3390/jcm10143058
[DOI: 10.3390/jcm10143058]
Zhang W, Tian X, Mumtahana F, Jiao J, Zhang T, Croce KD et al (2015) The existence of Th22, pure Th17 and Th1 cells in CIN and cervical cancer along with their frequency variation in different stages of cervical cancer. BMC Cancer 15:717
[DOI: 10.1186/s12885-015-1767-y]
Perusina Lanfranca M, Zhang Y, Girgis A, Kasselman S, Lazarus J, Kryczek I et al (2020) Interleukin 22 signaling regulates acinar cell plasticity to promote pancreatic tumor development in mice. Gastroenterology 158(5):1417
[DOI: 10.1053/j.gastro.2019.12.010]
Jiang R, Wang H, Deng L, Hou J, Shi R, Yao M et al (2013) IL-22 is related to development of human colon cancer by activation of STAT3. BMC Cancer 13:59
[DOI: 10.1186/1471-2407-13-59]
Jiang R, Tan Z, Deng L, Chen Y, Xia Y, Gao Y et al (2011) Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology (Baltimore, MD) 54(3):900���909
[DOI: 10.1002/hep.24486]
He Y, Yang Y, Xu J, Liao Y, Liu L, Deng L et al (2020) IL22 drives cutaneous melanoma cell proliferation, migration and invasion through activation of miR-181/STAT3/AKT axis. J Cancer 11(9):2679���2687
[DOI: 10.7150/jca.40974]
Hernandez P, Gronke K, Diefenbach A (2018) A catch-22: interleukin-22 and cancer. Eur J Immunol 48(1):15���31
[DOI: 10.1002/eji.201747183]
Protopsaltis NJ, Liang W, Nudleman E, Ferrara N (2019) Interleukin-22 promotes tumor angiogenesis. Angiogenesis 22(2):311���323
[DOI: 10.1007/s10456-018-9658-x]
Ganieva U, Schneiderman S, Bu P, Beaman K, Dambaeva S (2022) IL-22 regulates endometrial regeneration by enhancing tight junctions and orchestrating extracellular matrix. Front Immunol 13:955576
[DOI: 10.3389/fimmu.2022.955576]
Vita M, Henriksson M (2006) The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16(4):318���330
[DOI: 10.1016/j.semcancer.2006.07.015]
Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153���166
[DOI: 10.1038/nrc2602]
Lee S, Rauch J, Kolch W (2020) Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int J Mol Sci 21(3):1102
[DOI: 10.3390/ijms21031102]
Kciuk M, Gieleci��ska A, Budzinska A, Mojzych M, Kontek R (2022) Metastasis and MAPK pathways. Int J Mol Sci 23(7):3847
[DOI: 10.3390/ijms23073847]
Dumoutier L, Louahed J, Renauld JC (2000) Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 164(4):1814���1819
[DOI: 10.4049/jimmunol.164.4.1814]
Zhang F, Shang D, Zhang Y, Tian Y (2011) Interleukin-22 suppresses the growth of A498 renal cell carcinoma cells via regulation of STAT1 pathway. PLoS ONE 6(5):e20382
[DOI: 10.1371/journal.pone.0020382]
Fu X, Song M, Zhang R, Chen F (2023) Expression and clinical significance of peripheral blood IL-9 and IL-22 in patients with endometrial cancer. Minerva Gastroenterol (Torino). https://doi.org/10.23736/S2724-5985.23.03465-4
[DOI: 10.23736/S2724-5985.23.03465-4]
Kim EK, Choi E-J (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802(4):396���405
[DOI: 10.1016/j.bbadis.2009.12.009]
Park H-B, Baek K-H (2022) E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochim Biophys Acta Rev Cancer 1877(3):188736
[DOI: 10.1016/j.bbcan.2022.188736]
Shen L, Zhang C, Cui K, Liang X, Zhu G, Hong L (2023) Fer-mediated activation of the Ras-MAPK signaling pathway drives the proliferation, migration, and invasion of endometrial carcinoma cells. Mol Cell Biochem 479:1787���1799
[DOI: 10.1007/s11010-023-04890-1]
Xiao H, Zhang Z, Peng D, Wei C, Ma B (2021) Type II transmembrane serine proteases 4 (TMPRSS4) promotes proliferation, invasion and epithelial-mesenchymal transition in endometrial carcinoma cells (HEC1A and Ishikawa) via activation of MAPK and AKT. Anim Cells Syst (Seoul) 25(4):211���218
[DOI: 10.1080/19768354.2021.1944311]
Wang Y, Gao C, Zhang Y, Gao J, Teng F, Tian W et al (2016) Visfatin stimulates endometrial cancer cell proliferation via activation of PI3K/Akt and MAPK/ERK1/2 signalling pathways. Gynecol Oncol 143(1):168���178
[DOI: 10.1016/j.ygyno.2016.07.109]
Lee H, Bai W (2002) Regulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation. Mol Cell Biol 22(16):5835���5845
[DOI: 10.1128/MCB.22.16.5835-5845.2002]
Jeong AL, Han S, Lee S, Su Park J, Lu Y, Yu S et al (2016) Patient derived mutation W257G of PPP2R1A enhances cancer cell migration through SRC-JNK-c-Jun pathway. Sci Rep 6:27391
[DOI: 10.1038/srep27391]
Fukui H, Zhang X, Sun C, Hara K, Kikuchi S, Yamasaki T et al (2014) IL-22 produced by cancer-associated fibroblasts promotes gastric cancer cell invasion via STAT3 and ERK signaling. Br J Cancer 111(4):763���771
[DOI: 10.1038/bjc.2014.336]
Naher L, Kiyoshima T, Kobayashi I, Wada H, Nagata K, Fujiwara H et al (2012) STAT3 signal transduction through interleukin-22 in oral squamous cell carcinoma. Int J Oncol 41(5):1577���1586
[DOI: 10.3892/ijo.2012.1594]
Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld J-C (2002) Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. J Biol Chem 277(37):33676���82
[DOI: 10.1074/jbc.M204204200]
Radaeva S, Sun R, Pan H-N, Hong F, Gao B (2004) Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology (Baltimore, MD) 39(5):1332���1342
[DOI: 10.1002/hep.20184]
Bi Y, Cao J, Jin S, Lv L, Qi L, Liu F et al (2016) Interleukin-22 promotes lung cancer cell proliferation and migration via the IL-22R1/STAT3 and IL-22R1/AKT signaling pathways. Mol Cell Biochem 415(1���2):1���11
[DOI: 10.1007/s11010-016-2663-8]
Grants
21JCYBJC01080/Tianjin Municipal Science and Technology Program
21JCYBJC01080/Tianjin Municipal Science and Technology Program
21JCYBJC01080/Tianjin Municipal Science and Technology Program
21JCYBJC01080/Tianjin Municipal Science and Technology Program
21JCYBJC01080/Tianjin Municipal Science and Technology Program
21JCYBJC01080/Tianjin Municipal Science and Technology Program
21JCYBJC01080/Tianjin Municipal Science and Technology Program
21JCYBJC01080/Tianjin Municipal Science and Technology Program
21JCYBJC01080/Tianjin Municipal Science and Technology Program
21JCYBJC01080/Tianjin Municipal Science and Technology Program
21JCYBJC01080/Tianjin Municipal Science and Technology Program
21JCYBJC01080/Tianjin Municipal Science and Technology Program
21JCYBJC01080/Tianjin Municipal Science and Technology Program