Resistome in the indoor dust samples from workplaces and households: a pilot study.

Eva Klvanova, Petra Videnska, Vojtech Barton, Jan Bohm, Petra Splichalova, Viktorie Koksova, Milan Urik, Barbara Lanickova, Roman Prokes, Eva Budinska, Jana Klanova, Petra Borilova Linhartova
Author Information
  1. Eva Klvanova: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.
  2. Petra Videnska: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.
  3. Vojtech Barton: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.
  4. Jan Bohm: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.
  5. Petra Splichalova: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.
  6. Viktorie Koksova: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.
  7. Milan Urik: Department of Pediatric Otorhinolaryngology, University Hospital Brno, Brno, Czechia.
  8. Barbara Lanickova: Department of Neonatology, University Hospital Brno, Brno, Czechia.
  9. Roman Prokes: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.
  10. Eva Budinska: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.
  11. Jana Klanova: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.
  12. Petra Borilova Linhartova: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.

Abstract

The antibiotic resistance genes (ARGs) limit the susceptibility of bacteria to antimicrobials, representing a problem of high importance. Current research on the presence of ARGs in microorganisms focuses mainly on humans, livestock, hospitals, or wastewater. However, the spectrum of ARGs in the dust resistome in workplaces and households has gone relatively unexplored. This pilot study aimed to analyze resistome in indoor dust samples from participants' workplaces (a pediatric hospital, a maternity hospital, and a research center) and households and compare two different approaches to the ARGs analysis; high-throughput quantitative PCR (HT-qPCR) and whole metagenome shotgun sequencing (WMGS). In total, 143 ARGs were detected using HT-qPCR, with ARGs associated with the macrolides, lincosamides, and streptogramin B (MLSB) phenotype being the most abundant, followed by MDR (multi-drug resistance) genes, and genes conferring resistance to aminoglycosides. A higher overall relative quantity of ARGs was observed in indoor dust samples from workplaces than from households, with the pediatric hospital being associated with the highest relative quantity of ARGs. WMGS analysis revealed 36 ARGs, of which five were detected by both HT-qPCR and WMGS techniques. Accordingly, the efficacy of the WMGS approach to detect ARGs was lower than that of HT-qPCR. In summary, our pilot data revealed that indoor dust in buildings where people spend most of their time (workplaces, households) can be a significant source of antimicrobial-resistant microorganisms, which may potentially pose a health risk to both humans and animals.

Keywords

References

  1. Nat Commun. 2020 Mar 18;11(1):1427 [PMID: 32188862]
  2. Int J Environ Res Public Health. 2019 Oct 28;16(21): [PMID: 31661921]
  3. Front Microbiol. 2019 Feb 26;10:212 [PMID: 30863369]
  4. Indoor Air. 2020 Nov;30(6):1199-1212 [PMID: 32578244]
  5. Environ Int. 2021 Aug;153:106534 [PMID: 33799229]
  6. Lancet. 1998 Mar 14;351(9105):797-9 [PMID: 9519952]
  7. Int J Mol Sci. 2023 Apr 04;24(7): [PMID: 37047728]
  8. Environ Pollut. 2022 Oct 15;311:119991 [PMID: 35987288]
  9. Microbiologyopen. 2021 Jun;10(3):e1197 [PMID: 34180594]
  10. Exp Biol Med (Maywood). 2019 Apr;244(6):534-542 [PMID: 30616384]
  11. Pathogens. 2023 Aug 01;12(8): [PMID: 37623966]
  12. Environ Int. 2020 May;138:105649 [PMID: 32200314]
  13. Nat Microbiol. 2018 Nov;3(11):1255-1265 [PMID: 30349083]
  14. Ann Dermatol Venereol. 2019 Jan;146(1):26-30 [PMID: 30558958]
  15. Front Microbiol. 2013 May 23;4:135 [PMID: 23734150]
  16. Proc Natl Acad Sci U S A. 2015 May 5;112(18):5756-61 [PMID: 25902536]
  17. Exp Mol Med. 2021 Mar;53(3):301-309 [PMID: 33642573]
  18. Environ Sci Technol. 2016 Sep 20;50(18):9807-15 [PMID: 27599587]
  19. Microbiome. 2021 Jun 12;9(1):138 [PMID: 34118964]
  20. Genome Res. 2013 Jul;23(7):1163-9 [PMID: 23568836]
  21. PLoS One. 2012;7(5):e37849 [PMID: 22666400]
  22. Microbiome. 2016 Oct 7;4(1):54 [PMID: 27717408]
  23. Nat Med. 2020 Jun;26(6):941-951 [PMID: 32514171]
  24. Philos Trans R Soc Lond B Biol Sci. 2015 Jun 5;370(1670):20140087 [PMID: 25918444]
  25. Antimicrob Agents Chemother. 2001 Dec;45(12):3610-2 [PMID: 11709351]
  26. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  27. mSystems. 2023 Feb 23;8(1):e0057622 [PMID: 36602317]
  28. PLoS One. 2024 Apr 5;19(4):e0298325 [PMID: 38578803]
  29. Environ Pollut. 2021 Jan 1;268(Pt B):115620 [PMID: 33120141]
  30. Microbiome. 2022 Jan 27;10(1):19 [PMID: 35086564]
  31. F1000Res. 2020 Jul 27;9:774 [PMID: 33363717]
  32. Adv Sci (Weinh). 2023 Sep;10(26):e2301980 [PMID: 37424042]
  33. Nat Commun. 2022 Mar 3;13(1):1131 [PMID: 35241674]
  34. mSphere. 2019 May 1;4(3): [PMID: 31043514]
  35. PLoS One. 2014 Apr 18;9(4):e95578 [PMID: 24748147]
  36. Environ Int. 2020 Jun;139:105702 [PMID: 32248025]
  37. Int J Environ Res Public Health. 2020 Aug 12;17(16): [PMID: 32806670]
  38. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  39. Antimicrob Agents Chemother. 2020 Apr 21;64(5): [PMID: 32122903]
  40. Pediatr Infect Dis J. 2021 Aug 1;40(8):756-762 [PMID: 34166300]
  41. Microbiome. 2020 Nov 19;8(1):164 [PMID: 33213522]
  42. Chem Eng J. 2021 Feb 15;406:126854 [PMID: 32908446]
  43. Emerg Microbes Infect. 2019;8(1):1747-1759 [PMID: 31805829]
  44. Med Sci (Basel). 2017 Dec 21;6(1): [PMID: 29267233]
  45. PLoS One. 2016 Apr 21;11(4):e0154131 [PMID: 27100967]
  46. Sci Rep. 2024 May 24;14(1):11858 [PMID: 38789478]
  47. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  48. PLoS Pathog. 2023 Aug 10;19(8):e1011520 [PMID: 37561719]
  49. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  50. Biofilm. 2023 May 02;5:100129 [PMID: 37205903]
  51. BMC Microbiol. 2023 Jul 31;23(1):202 [PMID: 37525095]
  52. BMC Infect Dis. 2024 Jul 9;24(1):680 [PMID: 38982386]
  53. mSphere. 2024 Feb 28;9(2):e0057323 [PMID: 38323843]
  54. Commun Biol. 2024 Jun 8;7(1):706 [PMID: 38851788]
  55. Nat Commun. 2023 Mar 9;14(1):1291 [PMID: 36894532]
  56. Environ Int. 2022 Oct;168:107493 [PMID: 36063613]
  57. Environ Int. 2021 Aug;153:106501 [PMID: 33836339]
  58. Antibiotics (Basel). 2023 Jul 29;12(8): [PMID: 37627668]
  59. FEMS Microbiol Ecol. 2018 Sep 1;94(9): [PMID: 30052926]
  60. Emerg Infect Dis. 2007 Jan;13(1):97-103 [PMID: 17370521]
  61. mSphere. 2019 May 8;4(3): [PMID: 31068437]
  62. Antibiotics (Basel). 2020 Apr 16;9(4): [PMID: 32316342]
  63. Rev Esp Quimioter. 2019 Aug;32(4):303-310 [PMID: 31257821]
  64. Antimicrob Resist Infect Control. 2019 Nov 28;8:194 [PMID: 31798840]
  65. Bioessays. 2014 Mar;36(3):316-29 [PMID: 24474281]
  66. Microorganisms. 2021 Dec 09;9(12): [PMID: 34946144]
  67. mSphere. 2021 Oct 27;6(5):e0069121 [PMID: 34494880]
  68. BMC Biol. 2019 Sep 18;17(1):76 [PMID: 31533707]
  69. PLoS One. 2024 May 24;19(5):e0304250 [PMID: 38787814]
  70. Curr Opin Infect Dis. 2019 Dec;32(6):609-616 [PMID: 31567571]
  71. Genome Biol. 2019 Nov 28;20(1):257 [PMID: 31779668]
  72. Front Microbiol. 2018 Nov 30;9:2928 [PMID: 30555448]
  73. Nat Commun. 2020 Feb 4;11(1):693 [PMID: 32019923]
  74. Clin Infect Dis. 2020 Jan 16;70(3):525-527 [PMID: 31149703]
  75. Environ Int. 2022 Jan;158:106927 [PMID: 34673316]
  76. Sci Rep. 2024 Feb 1;14(1):2742 [PMID: 38302495]
  77. Int Microbiol. 2019 Sep;22(3):297-304 [PMID: 30811000]
  78. NAR Genom Bioinform. 2022 Feb 02;4(1):lqac007 [PMID: 35118380]
  79. Sci Rep. 2022 Feb 3;12(1):1892 [PMID: 35115599]
  80. Ann Clin Microbiol Antimicrob. 2024 Aug 13;23(1):72 [PMID: 39138497]

MeSH Term

Dust
Pilot Projects
Workplace
Humans
Air Pollution, Indoor
Bacteria
Family Characteristics
Anti-Bacterial Agents
Genes, Bacterial
Air Microbiology
Metagenome
High-Throughput Nucleotide Sequencing
Drug Resistance, Bacterial
Real-Time Polymerase Chain Reaction

Chemicals

Dust
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0ARGsresistancedustworkplacesindoorhouseholdshospitalHT-qPCRWMGSgenespilotsamplesantibioticresearchmicroorganismshumansresistomestudypediatricanalysisdetectedassociatedrelativequantityrevealedlimitsusceptibilitybacteriaantimicrobialsrepresentingproblemhighimportanceCurrentpresencefocusesmainlylivestockhospitalswastewaterHoweverspectrumgonerelativelyunexploredaimedanalyzeparticipants'maternitycentercomparetwodifferentapproacheshigh-throughputquantitativePCRwholemetagenomeshotgunsequencingtotal143usingmacrolideslincosamidesstreptograminBMLSBphenotypeabundantfollowedMDRmulti-drugconferringaminoglycosideshigheroverallobservedhighest36fivetechniquesAccordinglyefficacyapproachdetectlowersummarydatabuildingspeoplespendtimecansignificantsourceantimicrobial-resistantmaypotentiallyposehealthriskanimalsResistomehouseholds:geneantimicrobialenvironmentmicrobiome

Similar Articles

Cited By