Mineral Supplements in Ageing.

Simon Welham, Peter Rose, Charlotte Kirk, Lisa Coneyworth, Amanda Avery
Author Information
  1. Simon Welham: Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK. simon.welham@nottingham.ac.uk.
  2. Peter Rose: Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK.
  3. Charlotte Kirk: Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK.
  4. Lisa Coneyworth: Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK.
  5. Amanda Avery: Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK.

Abstract

With advancing age, achievement of dietary adequacy for all nutrients is increasingly difficult and this is particularly so for minerals. Various factors impede mineral acquisition and absorption including reduced appetite, depressed gastric acid production and dysregulation across a range of signalling pathways in the intestinal mucosa. Minerals are required in sufficient levels since they are critical for the proper functioning of metabolic processes in cells and tissues, including energy metabolism, DNA and protein synthesis, immune function, mobility, and skeletal integrity. When uptake is diminished or loss exceeds absorption, alternative approaches are required to enable individuals to maintain adequate mineral levels. Currently, supplementation has been used effectively in populations for the restoration of levels of some minerals like iron, zinc, and calcium, but these may not be without inherent challenges. Therefore, in this chapter we review the current understanding around the effectiveness of mineral supplementation for the minerals most clinically relevant for the elderly.

Keywords

References

  1. Adams ML, Lombi E, Zhao FJ, McGrath SP (2002) Evidence of low selenium concentrations in UK bread-making wheat grain. J Sci Food Agric 82(10):1160–1165 [DOI: 10.1002/jsfa.1167]
  2. Adatorwovor R, Roggenkamp K, Anderson JJ (2015) Intakes of calcium and phosphorus and calculated calcium-to-phosphorus ratios of older adults: NHANES 2005-2006 data. Nutrients 7(11):9633–9639. https://doi.org/10.3390/nu7115492 [DOI: 10.3390/nu7115492]
  3. Adebamowo SN, Spiegelman D, Flint AJ, Willett WC, Rexrode KM (2015) Intakes of magnesium, potassium, and calcium and the risk of stroke among men. Int J Stroke 10(7):1093–1100. https://doi.org/10.1111/ijs.12516 [DOI: 10.1111/ijs.12516]
  4. Al Alawi AM, Majoni SW, Falhammar H (2018) Magnesium and human health: perspectives and research directions. Int J Endocrinol 2018:9041694. https://doi.org/10.1155/2018/9041694 [DOI: 10.1155/2018/9041694]
  5. Alexander J (2015) Chapter 52 - Selenium. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook on the toxicology of metals, 4th edn. Academic, San Diego, pp 1175–1208 [DOI: 10.1016/B978-0-444-59453-2.00052-4]
  6. Amanzadeh J, Reilly RF Jr (2006) Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Pract Nephrol 2(3):136–148. https://doi.org/10.1038/ncpneph0124 [DOI: 10.1038/ncpneph0124]
  7. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90(17):7915–7922. https://doi.org/10.1073/pnas.90.17.7915 [DOI: 10.1073/pnas.90.17.7915]
  8. Amin U, McPartland A, O’Sullivan M, Silke C (2023) An overview of the management of osteoporosis in the aging female population. Womens Health (Lond) 19:17455057231176655. https://doi.org/10.1177/17455057231176655 [DOI: 10.1177/17455057231176655]
  9. Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5(1):196–201. https://doi.org/10.1021/pr050361j [DOI: 10.1021/pr050361j]
  10. Andriollo-Sanchez M, Hininger-Favier I, Meunier N, Toti E, Zaccaria M, Brandolini-Bunlon M et al (2005) Zinc intake and status in middle-aged and older European subjects: the ZENITH study. Eur J Clin Nutr 59(Suppl 2):S37–S41. https://doi.org/10.1038/sj.ejcn.1602296 [DOI: 10.1038/sj.ejcn.1602296]
  11. Barbagallo M, Dominguez LJ, Galioto A, Pineo A, Belvedere M (2010) Oral magnesium supplementation improves vascular function in elderly diabetic patients. Magnes Res 23:131–137 [PMID: 20736142]
  12. Barbagallo M, Veronese N, Dominguez LJ (2021) Magnesium in aging, health and diseases. Nutrients 13(2). https://doi.org/10.3390/nu13020463
  13. BDA (2021) British Dietetic Association - Calcium: Food Fact Sheet. https://www.bda.uk.com/resource/calcium.html
  14. Beaudart C, Locquet M, Touvier M, Reginster JY, Bruyère O (2019) Association between dietary nutrient intake and sarcopenia in the SarcoPhAge study. Aging Clin Exp Res 31:815–824 [DOI: 10.1007/s40520-019-01186-7]
  15. Bell RR, Draper HH, Tzeng DYM, Shin HK, Schmidt GR (1977) Physiological responses of human adults to foods containing phosphate additives. J Nutr 107(1):42–50. https://doi.org/10.1093/jn/107.1.42 [DOI: 10.1093/jn/107.1.42]
  16. Bodnar M, Konieczka P, Namiesnik J (2012) The properties, functions, and use of selenium compounds in living organisms. J Environ Sci Health C 30(3):225–252. https://doi.org/10.1080/10590501.2012.705164 [DOI: 10.1080/10590501.2012.705164]
  17. Bolland MJ, Leung W, Tai V, Bastin S, Gamble GD, Grey A, Reid IR (2015) Calcium intake and risk of fracture: systematic review. BMJ 351:h4580. https://doi.org/10.1136/bmj.h4580 [DOI: 10.1136/bmj.h4580]
  18. Bonjour JP, Brandolini-Bunlon M, Boirie Y, Morel-Laporte F, Braesco V, Bertière MC, Souberbielle JC (2008) Inhibition of bone turnover by milk intake in postmenopausal women. Br J Nutr 100(4):866–874. https://doi.org/10.1017/S0007114508937429 [DOI: 10.1017/S0007114508937429]
  19. Bonjour JP, Benoit V, Pourchaire O, Ferry M, Rousseau B, Souberbielle JC (2009) Inhibition of markers of bone resorption by consumption of vitamin D and calcium-fortified soft plain cheese by institutionalised elderly women. Br J Nutr 102:962–966 [DOI: 10.1017/S0007114509371743]
  20. Bonjour JP, Benoit V, Pourchaire O, Rousseau B, Souberbielle JC (2011) Nutritional approach for inhibiting bone resorption in institutionalized elderly women with vitamin D insufficiency and high prevalence of fracture. J Nutr Health Aging 15(5):404–409. https://doi.org/10.1007/s12603-011-0003-y [DOI: 10.1007/s12603-011-0003-y]
  21. Bove-Fenderson E, Mannstadt M (2018) Hypocalcemic disorders. Best Pract Res Clin Endocrinol Metab 32(5):639–656. https://doi.org/10.1016/j.beem.2018.05.006 [DOI: 10.1016/j.beem.2018.05.006]
  22. Brewer GJ (2001) Zinc acetate for the treatment of Wilson’s disease. Expert Opin Pharmacother 2(9):1473–1477. https://doi.org/10.1517/14656566.2.9.1473 [DOI: 10.1517/14656566.2.9.1473]
  23. Briefel RR, Bialostosky K, Kennedy-Stephenson J, McDowell MA, Ervin RB, Wright JD (2000) Zinc intake of the U.S. population: findings from the third National Health and Nutrition Examination Survey, 1988-1994. J Nutr 130(5S Suppl):1367S–1373S. https://doi.org/10.1093/jn/130.5.1367S [DOI: 10.1093/jn/130.5.1367S]
  24. Bristow SM, Bolland MJ, Gamble GD, Leung W, Reid IR (2022) Dietary calcium intake and change in bone mineral density in older adults: a systematic review of longitudinal cohort studies. Eur J Clin Nutr 76(2):196–205. https://doi.org/10.1038/s41430-021-00957-8 [DOI: 10.1038/s41430-021-00957-8]
  25. Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE et al (2006) Biofortification of UK food crops with selenium. Proc Nutr Soc 65(2):169–181. https://doi.org/10.1079/PNS2006490 [DOI: 10.1079/PNS2006490]
  26. Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4(2b):593–599. https://doi.org/10.1079/PHN2001143 [DOI: 10.1079/PHN2001143]
  27. Brown KH, Rivera JA, Bhutta Z, Gibson RS, King JC, Lönnerdal B et al (2004) International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25(1 Suppl 2):S99–S203. https://www.ncbi.nlm.nih.gov/pubmed/18046856 [PMID: 18046856]
  28. Bruins MJ, Van Dael P, Eggersdorfer M (2019) The role of nutrients in reducing the risk for noncommunicable diseases during aging. Nutrients 11(1). https://doi.org/10.3390/nu11010085
  29. Budreviciute A, Damiati S, Sabir DK, Onder K, Schuller-Goetzburg P, Plakys G et al (2020) Management and prevention strategies for non-communicable diseases (NCDs) and their risk factors. Front Public Health 8:574111. https://doi.org/10.3389/fpubh.2020.574111 [DOI: 10.3389/fpubh.2020.574111]
  30. Burger H, de Laet CE, van Daele PL, Weel AE, Witteman JC, Hofman A, Pols HA (1998) Risk factors for increased bone loss in an elderly population: the Rotterdam Study. Am J Epidemiol 147(9):871–879. https://doi.org/10.1093/oxfordjournals.aje.a009541 [DOI: 10.1093/oxfordjournals.aje.a009541]
  31. Calvo MS (1993) Dietary phosphorus, calcium metabolism and bone. J Nutr 123(9):1627–1633. https://doi.org/10.1093/jn/123.9.1627 [DOI: 10.1093/jn/123.9.1627]
  32. Calvo MS, Uribarri J (2013) Public health impact of dietary phosphorus excess on bone and cardiovascular health in the general population. Am J Clin Nutr 98(1):6–15. https://doi.org/10.3945/ajcn.112.053934 [DOI: 10.3945/ajcn.112.053934]
  33. Calvo MS, Moshfegh AJ, Tucker KL (2014) Assessing the health impact of phosphorus in the food supply: issues and considerations. Adv Nutr 5(1):104–113. https://doi.org/10.3945/an.113.004861 [DOI: 10.3945/an.113.004861]
  34. Campbell TC, Hayes JR (1974) Role of nutrition in the drug-metabolizing enzyme system. Pharmacol Rev 26(3):171–197 [PMID: 4142091]
  35. Cancelo-Hidalgo MJ, Castelo-Branco C, Palacios S, Haya-Palazuelos J, Ciria-Recasens M, Manasanch J, Pérez-Edo L (2013) Tolerability of different oral iron supplements: a systematic review. Curr Med Res Opin 29(4):291–303. https://doi.org/10.1185/03007995.2012.761599 [DOI: 10.1185/03007995.2012.761599]
  36. Carpenter TO (2000) Primary disorders of phosphate metabolism [Updated 2022 Jun 8]. In: Feingold KR, Anawalt B, Blackman MR (eds) Endotext [Internet]. MDText.com, Inc., South Dartmouth
  37. Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM et al (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40(D1):D742–D753. https://doi.org/10.1093/nar/gkr1014 [DOI: 10.1093/nar/gkr1014]
  38. Ceylan MN, Akdas S, Yazihan N (2021) The effects of zinc supplementation on C-reactive protein and inflammatory cytokines: A meta-analysis and systematical review. J Interf Cytokine Res 41(3):81–101. https://doi.org/10.1089/jir.2020.0209 [DOI: 10.1089/jir.2020.0209]
  39. Chang AR, Lazo M, Appel LJ, Gutiérrez OM, Grams ME (2014) High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III. Am J Clin Nutr 99(2):320–327. https://doi.org/10.3945/ajcn.113.073148 [DOI: 10.3945/ajcn.113.073148]
  40. Chen RA, Goodman WG (2004) Role of the calcium-sensing receptor in parathyroid gland physiology. Am J Physiol Renal Physiol 286(6):F1005–F1011. https://doi.org/10.1152/ajprenal.00013.2004 [DOI: 10.1152/ajprenal.00013.2004]
  41. Cherbuin N, Kumar R, Sachdev PS, Anstey KJ (2014) Dietary mineral intake and risk of mild cognitive impairment: the PATH through life project. Front Aging Neurosci 6:4. https://doi.org/10.3389/fnagi.2014.00004 [DOI: 10.3389/fnagi.2014.00004]
  42. Chrysant SG (2019) Proton pump inhibitor-induced hypomagnesemia complicated with serious cardiac arrhythmias. Expert Rev Cardiovasc Ther 17(5):345–351. https://doi.org/10.1080/14779072.2019.1615446 [DOI: 10.1080/14779072.2019.1615446]
  43. Clarys JP, Martin AD, Drinkwater DT (1984) Gross tissue weights in the human body by cadaver dissection. Hum Biol 56(3):459–473. https://www.ncbi.nlm.nih.gov/pubmed/6489991 [PMID: 6489991]
  44. Colvin RA, Holmes WR, Fontaine CP, Maret W (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2(5):306–317. https://doi.org/10.1039/b926662c [DOI: 10.1039/b926662c]
  45. COMA (1991) Committee on Medical Aspects of Food Policy (1991). Dietary reference values for food energy and nutrients for the United Kingdom. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/743790/Dietary_Reference_Values_-_A_Guide__1991_.pdf
  46. Costello RB, Elin RJ, Rosanoff A, Wallace TC, Guerrero-Romero F, Hruby A et al (2016) Perspective: the case for an evidence-based reference interval for serum magnesium: the time has come. Adv Nutr 7(6):977–993. https://doi.org/10.3945/an.116.012765 [DOI: 10.3945/an.116.012765]
  47. Cousins RJ (1985) Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 65(2):238–309. https://doi.org/10.1152/physrev.1985.65.2.238 [DOI: 10.1152/physrev.1985.65.2.238]
  48. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281(34):24085–24089. https://doi.org/10.1074/jbc.R600011200 [DOI: 10.1074/jbc.R600011200]
  49. Cubadda F, Aureli F, Ciardullo S, D’Amato M, Raggi A, Acharya R et al (2010) Changes in selenium speciation associated with increasing tissue concentrations of selenium in wheat grain. J Agric Food Chem 58(4):2295–2301 [DOI: 10.1021/jf903004a]
  50. Cui M, Li Q, Johnson R, Fleet JC (2012) Villin promoter-mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild-type and vitamin D receptor knockout mice. J Bone Miner Res 27(10):2097–2107. https://doi.org/10.1002/jbmr.1662 [DOI: 10.1002/jbmr.1662]
  51. Dai Q, Zhu X, Manson JE, Song Y, Li X, Franke AA et al (2018) Magnesium status and supplementation influence vitamin D status and metabolism: results from a randomized trial. Am J Clin Nutr 108(6):1249–1258. https://doi.org/10.1093/ajcn/nqy274 [DOI: 10.1093/ajcn/nqy274]
  52. de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95(1):1–46. https://doi.org/10.1152/physrev.00012.2014 [DOI: 10.1152/physrev.00012.2014]
  53. Derom ML, Sayón-Orea C, Martínez-Ortega JM, Martínez-González MA (2013) Magnesium and depression: a systematic review. Nutr Neurosci 16(5):191–206. https://doi.org/10.1179/1476830512y.0000000044 [DOI: 10.1179/1476830512y.0000000044]
  54. Devergnas S, Chimienti F, Naud N, Pennequin A, Coquerel Y, Chantegrel J et al (2004) Differential regulation of zinc efflux transporters ZnT-1, ZnT-5 and ZnT-7 gene expression by zinc levels: a real-time RT-PCR study. Biochem Pharmacol 68(4):699–709. https://doi.org/10.1016/j.bcp.2004.05.024 [DOI: 10.1016/j.bcp.2004.05.024]
  55. DiNicolantonio JJ, O’Keefe JH, Wilson W (2018) Subclinical magnesium deficiency: a principal driver of cardiovascular disease and a public health crisis. Open Heart 5(1):e000668. https://doi.org/10.1136/openhrt-2017-000668 [DOI: 10.1136/openhrt-2017-000668]
  56. Dominguez LJ, Barbagallo M, Lauretani F, Bandinelli S, Bos A, Corsi AM et al (2006) Magnesium and muscle performance in older persons: the InCHIANTI study. Am J Clin Nutr 84(2):419–426. https://doi.org/10.1093/ajcn/84.1.419 [DOI: 10.1093/ajcn/84.1.419]
  57. Drewnowski A (2022) Food insecurity has economic root causes. Nat Food 3(8):555–556. https://doi.org/10.1038/s43016-022-00577-w [DOI: 10.1038/s43016-022-00577-w]
  58. Drewnowski A, Shultz JM (2001) Impact of aging on eating behaviors, food choices, nutrition, and health status. J Nutr Health Aging 5(2):75–79. https://www.ncbi.nlm.nih.gov/pubmed/11426286 [PMID: 11426286]
  59. Eby GA 3rd, Eby KL (2010) Magnesium for treatment-resistant depression: a review and hypothesis. Med Hypotheses 74(4):649–660. https://doi.org/10.1016/j.mehy.2009.10.051 [DOI: 10.1016/j.mehy.2009.10.051]
  60. EFSA Panel on Dietetic Products, Nutrition and Allergies (2015) Scientific opinion on dietary reference values for magnesium. EFSA J 13(7):4186. https://doi.org/10.2903/j.efsa.2015.4186 [DOI: 10.2903/j.efsa.2015.4186]
  61. EFSA Panel on Nutrition, Novel Foods and Food Allergens, Turck D, Bohn T, Castenmiller J, de Henauw S et al (2023) Scientific opinion on the tolerable upper intake level for selenium. EFSA J 21(1):e07704. https://doi.org/10.2903/j.efsa.2023.7704 [DOI: 10.2903/j.efsa.2023.7704]
  62. Eid C, Hémadi M, Ha-Duong NT, El Hage Chahine JM (2014) Iron uptake and transfer from ceruloplasmin to transferrin. Biochim Biophys Acta 1840(6):1771–1781. https://doi.org/10.1016/j.bbagen.2014.01.011 [DOI: 10.1016/j.bbagen.2014.01.011]
  63. Evans GW (1986) Zinc and its deficiency diseases. Clin Physiol Biochem 4(1):94–98. https://www.ncbi.nlm.nih.gov/pubmed/3514057 [PMID: 3514057]
  64. Figueira I, Fernandes A, Mladenovic Djordjevic A, Lopez-Contreras A, Henriques CM, Selman C et al (2016) Interventions for age-related diseases: shifting the paradigm. Mech Ageing Dev 160:69–92. https://doi.org/10.1016/j.mad.2016.09.009 [DOI: 10.1016/j.mad.2016.09.009]
  65. Fleet JC (2022) Vitamin D-mediated regulation of intestinal calcium absorption. Nutrients 14(16):3351. https://doi.org/10.3390/nu14163351 [DOI: 10.3390/nu14163351]
  66. Forbes RM, Cooper AR, Mitchell HH (1953) The composition of the adult human body as determined by chemical analysis. J Biol Chem 203(1):359–366. https://www.ncbi.nlm.nih.gov/pubmed/13069519 [DOI: 10.1016/S0021-9258(19)52646-1]
  67. Fordyce FM (2005) Selenium deficiency and toxicity in the environment. In: Selinus O (ed) Essentials of medical geology. Springer, Dordrecht, pp 375–416
  68. Fordyce FM, Brereton N, Hughes J, Luo W, Lewis J (2010) An initial study to assess the use of geological parent materials to predict the Se concentration in overlying soils and in five staple foodstuffs produced on them in Scotland. Sci Total Environ 408(22):5295–5305. https://doi.org/10.1016/j.scitotenv.2010.08.007 [DOI: 10.1016/j.scitotenv.2010.08.007]
  69. Fraenkel PG (2017) Anemia of inflammation: a review. Med Clin North Am 101(2):285–296. https://doi.org/10.1016/j.mcna.2016.09.005 [DOI: 10.1016/j.mcna.2016.09.005]
  70. Franceschi C, Olivieri F, Marchegiani F, Cardelli M, Cavallone L, Capri M et al (2005) Genes involved in immune response/inflammation, IGF1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: the lesson of centenarians. Mech Ageing Dev 126(2):351–361. https://doi.org/10.1016/j.mad.2004.08.028 [DOI: 10.1016/j.mad.2004.08.028]
  71. Fredlund K, Isaksson M, Rossander-Hulthén L, Almgren A, Sandberg AS (2006) Absorption of zinc and retention of calcium: dose-dependent inhibition by phytate. J Trace Elem Med Biol 20(1):49–57. https://doi.org/10.1016/j.jtemb.2006.01.003 [DOI: 10.1016/j.jtemb.2006.01.003]
  72. Ganz T (2005) Hepcidin--a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol 18(2):171–182. https://doi.org/10.1016/j.beha.2004.08.020 [DOI: 10.1016/j.beha.2004.08.020]
  73. Gasche C, Berstad A, Befrits R, Beglinger C, Dignass A, Erichsen K et al (2007) Guidelines on the diagnosis and management of iron deficiency and anemia in inflammatory bowel diseases. Inflamm Bowel Dis 13(12):1545–1553. https://doi.org/10.1002/ibd.20285 [DOI: 10.1002/ibd.20285]
  74. Geerse DA, Bindels AJ, Kuiper MA, Roos AN, Spronk PE, Schultz MJ (2010) Treatment of hypophosphatemia in the intensive care unit: a review. Crit Care 14(4):R147. https://doi.org/10.1186/cc9215 [DOI: 10.1186/cc9215]
  75. Giacconi R, Cipriano C, Albanese F, Boccoli G, Saba V, Olivieri F et al (2004) The -174G/C polymorphism of IL-6 is useful to screen old subjects at risk for atherosclerosis or to reach successful ageing. Exp Gerontol 39(4):621–628. https://doi.org/10.1016/j.exger.2003.12.013 [DOI: 10.1016/j.exger.2003.12.013]
  76. Glahn RP, Van Campen DR (1997) Iron uptake is enhanced in Caco-2 cell monolayers by cysteine and reduced cysteinyl glycine. J Nutr 127(4):642–647. https://doi.org/10.1093/jn/127.4.642 [DOI: 10.1093/jn/127.4.642]
  77. Goodnough LT, Schrier SL (2014) Evaluation and management of anemia in the elderly. Am J Hematol 89(1):88–96. https://doi.org/10.1002/ajh.23598 [DOI: 10.1002/ajh.23598]
  78. Gröber U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7(9):8199–8226. https://www.mdpi.com/2072-6643/7/9/5388 [DOI: 10.3390/nu7095388]
  79. Guralnik JM, Eisenstaedt RS, Ferrucci L, Klein HG, Woodman RC (2004) Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood 104(8):2263–2268. https://doi.org/10.1182/blood-2004-05-1812 [DOI: 10.1182/blood-2004-05-1812]
  80. Gutiérrez OM (2021) Treatment of iron deficiency anemia in CKD and end-stage kidney disease. Kidney Int Rep 6(9):2261–2269. https://doi.org/10.1016/j.ekir.2021.05.020 [DOI: 10.1016/j.ekir.2021.05.020]
  81. Haase H, Mocchegiani E, Rink L (2006) Correlation between zinc status and immune function in the elderly. Biogerontology 7(5–6):421–428. https://doi.org/10.1007/s10522-006-9057-3 [DOI: 10.1007/s10522-006-9057-3]
  82. Hambidge KM (1992) Zinc and diarrhea. Acta Paediatr Suppl 381:82–86. https://doi.org/10.1111/j.1651-2227.1992.tb12377.x [DOI: 10.1111/j.1651-2227.1992.tb12377.x]
  83. Harvey NC, Biver E, Kaufman JM, Bauer J, Branco J, Brandi ML et al (2017) The role of calcium supplementation in healthy musculoskeletal ageing: an expert consensus meeting of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the International Foundation for Osteoporosis (IOF). Osteoporos Int 28(2):447–462. https://doi.org/10.1007/s00198-016-3773-6 [DOI: 10.1007/s00198-016-3773-6]
  84. Hawley S, Javaid MK, Prieto-Alhambra D, Lippett J, Sheard S, Arden NK et al (2016) Clinical effectiveness of orthogeriatric and fracture liaison service models of care for hip fracture patients: population-based longitudinal study. Age Ageing 45(2):236–242. https://doi.org/10.1093/ageing/afv204 [DOI: 10.1093/ageing/afv204]
  85. Heaney RP (2004) Phosphorus nutrition and the treatment of osteoporosis. Mayo Clin Proc 79(1):91–97. https://doi.org/10.4065/79.1.91 [DOI: 10.4065/79.1.91]
  86. Heaney RP, Recker RR, Stegman MR, Moy AJ (1989) Calcium absorption in women: relationships to calcium intake, estrogen status, and age. J Bone Miner Res 4(4):469–475. https://doi.org/10.1002/jbmr.5650040404 [DOI: 10.1002/jbmr.5650040404]
  87. High KP (1999) Micronutrient supplementation and immune function in the elderly. Clin Infect Dis 28(4):717–722. https://doi.org/10.1086/515208 [DOI: 10.1086/515208]
  88. Hoppler M, Schönbächler A, Meile L, Hurrell RF, Walczyk T (2008) Ferritin-iron is released during boiling and in vitro gastric digestion. J Nutr 138(5):878–884. https://doi.org/10.1093/jn/138.5.878 [DOI: 10.1093/jn/138.5.878]
  89. Hurrell RF (2004) Phytic acid degradation as a means of improving iron absorption. Int J Vitam Nutr Res 74(6):445–452. https://doi.org/10.1024/0300-9831.74.6.445 [DOI: 10.1024/0300-9831.74.6.445]
  90. Imel EA, Econs MJ (2012) Approach to the hypophosphatemic patient. J Clin Endocrinol Metab 97(3):696–706. https://doi.org/10.1210/jc.2011-1319 [DOI: 10.1210/jc.2011-1319]
  91. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium (2011) The National Academies Collection: reports funded by National Institutes of Health. In: Ross AC, Taylor CL, Yaktine AL, Del Valle HB (eds) Dietary reference intakes for calcium and vitamin D. National Academies Press, Washington (DC). Copyright © 2011, National Academy of Sciences
  92. Ito T, Jensen RT (2010) Association of long-term proton pump inhibitor therapy with bone fractures and effects on absorption of calcium, vitamin B12, iron, and magnesium. Curr Gastroenterol Rep 12(6):448–457. https://doi.org/10.1007/s11894-010-0141-0 [DOI: 10.1007/s11894-010-0141-0]
  93. Jones G, Nguyen T, Sambrook P, Kelly PJ, Eisman JA (1994) Progressive loss of bone in the femoral neck in elderly people: longitudinal findings from the Dubbo osteoporosis epidemiology study. BMJ 309(6956):691–695. https://www.ncbi.nlm.nih.gov/pubmed/7950520 [DOI: 10.1136/bmj.309.6956.691]
  94. Joshi S (2015) Vitamin supplementation in the elderly. Clin Geriatr Med 31(3):355–366. https://doi.org/10.1016/j.cger.2015.04.004 [DOI: 10.1016/j.cger.2015.04.004]
  95. Jüppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani E, Richards J et al (1991) A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 254(5034):1024–1026. https://doi.org/10.1126/science.1658941 [DOI: 10.1126/science.1658941]
  96. Kahwati LC, Weber RP, Pan H, Gourlay M, LeBlanc E, Coker-Schwimmer M, Viswanathan M (2018) Vitamin D, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling adults: evidence report and systematic review for the US Preventive Services Task Force. JAMA 319(15):1600–1612. https://doi.org/10.1001/jama.2017.21640 [DOI: 10.1001/jama.2017.21640]
  97. Kalantar-Zadeh K, Gutekunst L, Mehrotra R, Kovesdy CP, Bross R, Shinaberger CS et al (2010) Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin J Am Soc Nephrol 5(3):519–530. https://doi.org/10.2215/cjn.06080809 [DOI: 10.2215/cjn.06080809]
  98. Kápolna E, Gergely V, Dernovics M, Illés A, Fodor P (2007) Fate of selenium species in sesame seeds during simulated bakery process. J Food Eng 79(2):494–501 [DOI: 10.1016/j.jfoodeng.2006.01.075]
  99. Karakousis ND, Pyrgioti EE, Georgakopoulos PN, Apergi K, Papanas N (2023) Magnesium and diabetic foot ulcers: a mini review. Int J Low Extrem Wounds 15347346231176117. https://doi.org/10.1177/15347346231176117
  100. Kassarjian Z, Russell RM (1989) Hypochlorhydria: a factor in nutrition. Annu Rev Nutr 9:271–285. https://doi.org/10.1146/annurev.nu.09.070189.001415 [DOI: 10.1146/annurev.nu.09.070189.001415]
  101. Kellett GL (2011) Alternative perspective on intestinal calcium absorption: proposed complementary actions of Ca(v)1.3 and TRPV6. Nutr Rev 69(7):347–370. https://doi.org/10.1111/j.1753-4887.2011.00395.x [DOI: 10.1111/j.1753-4887.2011.00395.x]
  102. Kemi VE, Rita HJ, Kärkkäinen MU, Viljakainen HT, Laaksonen MM, Outila TA, Lamberg-Allardt CJ (2009) Habitual high phosphorus intakes and foods with phosphate additives negatively affect serum parathyroid hormone concentration: a cross-sectional study on healthy premenopausal women. Public Health Nutr 12(10):1885–1892. https://doi.org/10.1017/s1368980009004819 [DOI: 10.1017/s1368980009004819]
  103. Khabbaz Koche Ghazi M, Ghaffari S, Naemi M, Salehi R, Taban Sadeghi M, Barati M et al (2021) Effects of sodium selenite and selenium-enriched yeast on cardiometabolic indices of patients with atherosclerosis: a double-blind randomized clinical trial study. J Cardiovasc Thorac Res 13(4):314–319. https://doi.org/10.34172/jcvtr.2021.51 [DOI: 10.34172/jcvtr.2021.51]
  104. Khanal RC, Nemere I (2008) Regulation of intestinal calcium transport. Annu Rev Nutr 28:179–196. https://doi.org/10.1146/annurev.nutr.010308.161202 [DOI: 10.1146/annurev.nutr.010308.161202]
  105. Kirkland AE, Sarlo GL, Holton KF. (2018) The Role of Magnesium in Neurological Disorders. Nutrients. Jun 6;10(6):730. https://doi.org/10.3390/nu10060730 . PMID: 29882776; PMCID: PMC6024559
  106. Kogirima M, Kurasawa R, Kubori S, Sarukura N, Nakamori M, Okada S et al (2007) Ratio of low serum zinc levels in elderly Japanese people living in the central part of Japan. Eur J Clin Nutr 61(3):375–381. https://doi.org/10.1038/sj.ejcn.1602520 [DOI: 10.1038/sj.ejcn.1602520]
  107. Kopecky SL, Bauer DC, Gulati M, Nieves JW, Singer AJ, Toth PP et al (2016) Lack of evidence linking calcium with or without vitamin D supplementation to cardiovascular disease in generally healthy adults: a clinical guideline from the National Osteoporosis Foundation and the American Society for Preventive Cardiology. Ann Intern Med 165(12):867–868. https://doi.org/10.7326/M16-1743 [DOI: 10.7326/M16-1743]
  108. Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S (2013) The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med 65:1174–1194. https://doi.org/10.1016/j.freeradbiomed.2013.09.001 [DOI: 10.1016/j.freeradbiomed.2013.09.001]
  109. Kroll MH, Elin RJ (1985) Relationships between magnesium and protein concentrations in serum. Clin Chem 31(2):244–246 [DOI: 10.1093/clinchem/31.2.244]
  110. Küry S, Dréno B, Bézieau S, Giraudet S, Kharfi M, Kamoun R, Moisan JP (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31(3):239–240. https://doi.org/10.1038/ng913 [DOI: 10.1038/ng913]
  111. Lane DJ, Richardson DR (2014) The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radic Biol Med 75:69–83. https://doi.org/10.1016/j.freeradbiomed.2014.07.007 [DOI: 10.1016/j.freeradbiomed.2014.07.007]
  112. Lee HH, Prasad AS, Brewer GJ, Owyang C (1989) Zinc absorption in human small intestine. Am J Phys 256(1 Pt 1):G87–G91. https://doi.org/10.1152/ajpgi.1989.256.1.G87 [DOI: 10.1152/ajpgi.1989.256.1.G87]
  113. Leung J, Crook M (2019) Disorders of phosphate metabolism. J Clin Pathol 72(11):741–747. https://doi.org/10.1136/jclinpath-2018-205130 [DOI: 10.1136/jclinpath-2018-205130]
  114. Lindblad AJ, Cotton C, Allan GM (2015) Iron deficiency anemia in the elderly. Can Fam Physician 61(2):159. https://www.ncbi.nlm.nih.gov/pubmed/25676647 [PMID: 25676647]
  115. Lips P, Bouillon R, van Schoor NM, Vanderschueren D, Verschueren S, Kuchuk N et al (2010) Reducing fracture risk with calcium and vitamin D. Clin Endocrinol 73(3):277–285. https://doi.org/10.1111/j.1365-2265.2009.03701.x [DOI: 10.1111/j.1365-2265.2009.03701.x]
  116. Liu G, Weinger JG, Lu ZL, Xue F, Sadeghpour S (2016) Efficacy and safety of MMFS-01, a synapse density enhancer, for treating cognitive impairment in older adults: A randomized, double-blind, placebo-controlled trial. J Alzheimers Dis 49(4):971–990. https://doi.org/10.3233/jad-150538 [DOI: 10.3233/jad-150538]
  117. Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172. https://doi.org/10.1146/annurev.nutr.24.012003.132402 [DOI: 10.1146/annurev.nutr.24.012003.132402]
  118. Lobionda S, Sittipo P, Kwon HY, Lee YK (2019) The role of gut microbiota in intestinal inflammation with respect to diet and extrinsic stressors. Microorganisms 7(8). https://doi.org/10.3390/microorganisms7080271
  119. Lonnerdal B (2000) Dietary factors influencing zinc absorption. J Nutr 130(5S Suppl):1378S–1383S. https://doi.org/10.1093/jn/130.5.1378S [DOI: 10.1093/jn/130.5.1378S]
  120. Lorenzo-López L, Maseda A, de Labra C, Regueiro-Folgueira L, Rodríguez-Villamil JL, Millán-Calenti JC (2017) Nutritional determinants of frailty in older adults: a systematic review. BMC Geriatr 17(1):108. https://doi.org/10.1186/s12877-017-0496-2 [DOI: 10.1186/s12877-017-0496-2]
  121. Lowe NM, Fekete K, Decsi T (2009) Methods of assessment of zinc status in humans: a systematic review. Am J Clin Nutr 89(6):2040S–2051S. https://doi.org/10.3945/ajcn.2009.27230G [DOI: 10.3945/ajcn.2009.27230G]
  122. Maares M, Haase H (2020) A guide to human zinc absorption: general overview and recent advances of in vitro intestinal models. Nutrients 12(3). https://doi.org/10.3390/nu12030762
  123. MacFarquhar JK, Broussard DL, Melstrom P, Hutchinson R, Wolkin A, Martin C et al (2010) Acute selenium toxicity associated with a dietary supplement. Arch Intern Med 170(3):256–261. https://doi.org/10.1001/archinternmed.2009.495 [DOI: 10.1001/archinternmed.2009.495]
  124. Maggini S, Pierre A, Calder PC (2018) Immune function and micronutrient requirements change over the life course. Nutrients 10(10):1531. https://doi.org/10.3390/nu10101531 [DOI: 10.3390/nu10101531]
  125. Manoj P, Derwin R, George S (2023) What is the impact of daily oral supplementation of vitamin D3 (cholecalciferol) plus calcium on the incidence of hip fracture in older people? A systematic review and meta-analysis. Int J Older People Nursing 18(1):e12492. https://doi.org/10.1111/opn.12492 [DOI: 10.1111/opn.12492]
  126. Marcellini F, Giuli C, Papa R, Gagliardi C, Dedoussis G, Herbein G et al (2006) Zinc status, psychological and nutritional assessment in old people recruited in five European countries: Zincage study. Biogerontology 7(5–6):339–345. https://doi.org/10.1007/s10522-006-9048-4 [DOI: 10.1007/s10522-006-9048-4]
  127. Maret W, Krezel A (2007) Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. Mol Med 13(7–8):371–375. https://doi.org/10.2119/2007-00036.Maret [DOI: 10.2119/2007-00036.Maret]
  128. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20(1):3–18. https://doi.org/10.1016/j.jtemb.2006.01.006 [DOI: 10.1016/j.jtemb.2006.01.006]
  129. Mazidi M, Rezaie P, Banach M (2018) Effect of magnesium supplements on serum C-reactive protein: a systematic review and meta-analysis. Arch Med Sci 14(4):707–716. https://doi.org/10.5114/aoms.2018.75719 [DOI: 10.5114/aoms.2018.75719]
  130. McLean RM (1994) Magnesium and its therapeutic uses: a review. Am J Med 96(1):63–76. https://doi.org/10.1016/0002-9343(94)90117-1 [DOI: 10.1016/0002-9343(94)90117-1]
  131. McMahon RJ, Cousins RJ (1998) Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc Natl Acad Sci USA 95(9):4841–4846. https://doi.org/10.1073/pnas.95.9.4841 [DOI: 10.1073/pnas.95.9.4841]
  132. Mintel (2022) UK vitamins and supplements market report 2022
  133. Mocchegiani E, Muzzioli M, Cipriano C, Giacconi R (1998) Zinc, T-cell pathways, aging: role of metallothioneins. Mech Ageing Dev 106(1–2):183–204. https://doi.org/10.1016/s0047-6374(98)00115-8 [DOI: 10.1016/s0047-6374(98)00115-8]
  134. Mocchegiani E, Costarelli L, Giacconi R, Cipriano C, Muti E, Tesei S, Malavolta M (2006) Nutrient-gene interaction in ageing and successful ageing. A single nutrient (zinc) and some target genes related to inflammatory/immune response. Mech Ageing Dev 127(6):517–525. https://doi.org/10.1016/j.mad.2006.01.010 [DOI: 10.1016/j.mad.2006.01.010]
  135. Mocchegiani E, Burkle A, Fulop T (2008) Zinc and ageing (ZINCAGE Project). Exp Gerontol 43(5):361–362. https://doi.org/10.1016/j.exger.2008.03.009 [DOI: 10.1016/j.exger.2008.03.009]
  136. Mocchegiani E, Romeo J, Malavolta M, Costarelli L, Giacconi R, Diaz LE, Marcos A (2013) Zinc: dietary intake and impact of supplementation on immune function in elderly. Age (Dordr) 35(3):839–860. https://doi.org/10.1007/s11357-011-9377-3 [DOI: 10.1007/s11357-011-9377-3]
  137. Molina DK, DiMaio VJ (2012) Normal organ weights in men: part II-the brain, lungs, liver, spleen, and kidneys. Am J Forensic Med Pathol 33(4):368–372. https://doi.org/10.1097/PAF.0b013e31823d29ad [DOI: 10.1097/PAF.0b013e31823d29ad]
  138. Moreno-Reyes R, Egrise D, Nève J, Pasteels JL, Schoutens A (2001) Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. J Bone Miner Res 16(8):1556–1563. https://doi.org/10.1359/jbmr.2001.16.8.1556 [DOI: 10.1359/jbmr.2001.16.8.1556]
  139. MoshfeghA, Goldman J, Ahuja JK, Rhodes D, La Comb R (2009) What we eat in America. NHANES 2005–2006. Usual nutrient intakes from food and water compared to 1997 Dietary Reference Intake for vitamin D, calcium, phosphorus and magnesium. Washington, D.C. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/0506/usual_nutrient_intake_vitD_ca_phos_mg_2005-06.pdf
  140. Mousavi SM, Hajishafiee M, Clark CCT, Borges do Nascimento IJ, Milajerdi A, Amini MR, Esmaillzadeh A (2020) Clinical effectiveness of zinc supplementation on the biomarkers of oxidative stress: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 161:105166. https://doi.org/10.1016/j.phrs.2020.105166 [DOI: 10.1016/j.phrs.2020.105166]
  141. Nemeth E, Ganz T (2014) Anemia of inflammation. Hematol Oncol Clin North Am 28(4):671–681., vi. https://doi.org/10.1016/j.hoc.2014.04.005 [DOI: 10.1016/j.hoc.2014.04.005]
  142. Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T (2003) Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101(7):2461–2463. https://doi.org/10.1182/blood-2002-10-3235 [DOI: 10.1182/blood-2002-10-3235]
  143. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306(5704):2090–2093. https://doi.org/10.1126/science.1104742 [DOI: 10.1126/science.1104742]
  144. New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C et al (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr 71(1):142–151. https://doi.org/10.1093/ajcn/71.1.142 [DOI: 10.1093/ajcn/71.1.142]
  145. NHMRC (2006) National Health and Medical Research Council, Australian Government Department of Health and Ageing, New Zealand Ministry of Health. Nutrient Reference Values for Australia and New Zealand. https://www.nhmrc.gov.au/about-us/publications/nutrient-reference-values-australia-and-new-zealand-including-recommended-dietary-intakes
  146. NICE (2006) National Institute for Healthcare Excellence. Nutrition support for adults: oral nutrition support, enteral tube feeding and parenteral nutrition. https://www.nice.org.uk/guidance/cg32
  147. Nielsen FH (2014) Effects of magnesium depletion on inflammation in chronic disease. Curr Opin Clin Nutr Metab Care 17(6):525–530. https://doi.org/10.1097/mco.0000000000000093 [DOI: 10.1097/mco.0000000000000093]
  148. Nielsen FH (2016) Guidance for the determination of status indicators and dietary requirements for magnesium. Magnes Res 29(4):154–160. https://doi.org/10.1684/mrh.2016.0416 [DOI: 10.1684/mrh.2016.0416]
  149. Nielsen FH (2018) Magnesium deficiency and increased inflammation: current perspectives. J Inflamm Res 11:25–34. https://doi.org/10.2147/jir.s136742 [DOI: 10.2147/jir.s136742]
  150. NOGG (2021) National Osteoporosis Guideline Group clinical guidelines. https://www.sheffield.ac.uk/NOGG/mainrecommendations.html
  151. SACN Iron and Health Report (2011). https://www.gov.uk/government/publications/sacn-iron-and-health-report
  152. Ozawa M, Ninomiya T, Ohara T, Hirakawa Y, Doi Y, Hata J et al (2012) Self-reported dietary intake of potassium, calcium, and magnesium and risk of dementia in the Japanese: the Hisayama Study. J Am Geriatr Soc 60(8):1515–1520. https://doi.org/10.1111/j.1532-5415.2012.04061.x [DOI: 10.1111/j.1532-5415.2012.04061.x]
  153. Pansu D, Bellaton C, Roche C, Bronner F (1983) Duodenal and ileal calcium absorption in the rat and effects of vitamin D. Am J Phys 244(6):G695–G700. https://doi.org/10.1152/ajpgi.1983.244.6.G695 [DOI: 10.1152/ajpgi.1983.244.6.G695]
  154. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9(7):775–806. https://doi.org/10.1089/ars.2007.1528 [DOI: 10.1089/ars.2007.1528]
  155. Peacock M (2021) Phosphate metabolism in health and disease. Calcif Tissue Int 108(1):3–15. https://doi.org/10.1007/s00223-020-00686-3 [DOI: 10.1007/s00223-020-00686-3]
  156. Peacock M, Liu G, Carey M, McClintock R, Ambrosius W, Hui S, Johnston CC (2000) Effect of calcium or 25OH vitamin D3 dietary supplementation on bone loss at the hip in men and women over the age of 60. J Clin Endocrinol Metab 85(9):3011–3019. https://doi.org/10.1210/jcem.85.9.6836 [DOI: 10.1210/jcem.85.9.6836]
  157. Pedrero Z, Madrid Y, Cámara C (2006) Selenium species bioaccessibility in enriched radish (Raphanus sativus): a potential dietary source of selenium. J Agric Food Chem 54(6):2412–2417 [DOI: 10.1021/jf052500n]
  158. Pepe J, Colangelo L, Biamonte F, Sonato C, Danese VC, Cecchetti V et al (2020) Diagnosis and management of hypocalcemia. Endocrine 69(3):485–495. https://doi.org/10.1007/s12020-020-02324-2 [DOI: 10.1007/s12020-020-02324-2]
  159. Pergola PE, Fishbane S, Ganz T (2019) Novel oral iron therapies for iron deficiency anemia in chronic kidney disease. Adv Chronic Kidney Dis 26(4):272–291. https://doi.org/10.1053/j.ackd.2019.05.002 [DOI: 10.1053/j.ackd.2019.05.002]
  160. Perri G, Mathers JC, Martin-Ruiz C, et al. (2024) Selenium status and its determinants in very old adults: insights from the Newcastle 85+ Study. British Journal of Nutrition. 131(5):901–910. https://doi.org/10.1017/S0007114523002398
  161. Petrak J, Vyoral D (2005) Hephaestin--a ferroxidase of cellular iron export. Int J Biochem Cell Biol 37(6):1173–1178. https://doi.org/10.1016/j.biocel.2004.12.007 [DOI: 10.1016/j.biocel.2004.12.007]
  162. Petry N, Egli I, Zeder C, Walczyk T, Hurrell R (2010) Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr 140(11):1977–1982. https://doi.org/10.3945/jn.110.125369 [DOI: 10.3945/jn.110.125369]
  163. Pfeiffer CM, Looker AC (2017) Laboratory methodologies for indicators of iron status: strengths, limitations, and analytical challenges. Am J Clin Nutr 106(Suppl 6):1606S–1614S. https://doi.org/10.3945/ajcn.117.155887 [DOI: 10.3945/ajcn.117.155887]
  164. Piuri G, Zocchi M, Della Porta M, Ficara V, Manoni M, Zuccotti GV et al (2021) Magnesium in obesity, metabolic syndrome, and type 2 diabetes. Nutrients 13(2). https://doi.org/10.3390/nu13020320
  165. Prasad AS (1985) Clinical manifestations of zinc deficiency. Annu Rev Nutr 5:341–363. https://doi.org/10.1146/annurev.nu.05.070185.002013 [DOI: 10.1146/annurev.nu.05.070185.002013]
  166. Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14(5–6):353–357. https://doi.org/10.2119/2008-00033.Prasad [DOI: 10.2119/2008-00033.Prasad]
  167. Prentice AM, Mendoza YA, Pereira D, Cerami C, Wegmuller R, Constable A, Spieldenner J (2017) Dietary strategies for improving iron status: balancing safety and efficacy. Nutr Rev 75(1):49–60. https://doi.org/10.1093/nutrit/nuw055 [DOI: 10.1093/nutrit/nuw055]
  168. Puccinelli M, Malorgio F, Pezzarossa B (2017) Selenium enrichment of horticultural crops. Molecules 22(6):933. https://www.mdpi.com/1420-3049/22/6/933 [DOI: 10.3390/molecules22060933]
  169. Pyrzynska K (2009) Selenium speciation in enriched vegetables. Food Chem 114(4):1183–1191 [DOI: 10.1016/j.foodchem.2008.11.026]
  170. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285(33):25103–25108. https://doi.org/10.1074/jbc.R109.041087 [DOI: 10.1074/jbc.R109.041087]
  171. Ravn-Haren G, Bügel S, Krath BN, Hoac T, Stagsted J, Jørgensen K et al (2008) A short-term intervention trial with selenate, selenium-enriched yeast and selenium-enriched milk: effects on oxidative defence regulation. Br J Nutr 99(4):883–892. https://doi.org/10.1017/S0007114507825153 [DOI: 10.1017/S0007114507825153]
  172. Rayman MP (1997) Dietary selenium: time to actIntakes and blood levels falling. British Medical Journal Publishing Group
  173. Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233–241. https://doi.org/10.1016/S0140-6736(00)02490-9 [DOI: 10.1016/S0140-6736(00)02490-9]
  174. Rayman MP (2002) The argument for increasing selenium intake. Proc Nutr Soc 61(2):203–215 [DOI: 10.1079/PNS2002153]
  175. Rayman MP (2004) The use of high-selenium yeast to raise selenium status: how does it measure up? Br J Nutr 92(4):557–573 [DOI: 10.1079/BJN20041251]
  176. Razzaghi R, Pidar F, Momen-Heravi M, Bahmani F, Akbari H, Asemi Z (2018) Magnesium supplementation and the effects on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res 181(2):207–215. https://doi.org/10.1007/s12011-017-1056-5 [DOI: 10.1007/s12011-017-1056-5]
  177. Razzaque MS (2018) Magnesium: are we consuming enough? Nutrients 10(12). https://doi.org/10.3390/nu10121863
  178. Reddy ST, Soman SS, Yee J (2018) Magnesium balance and measurement. Adv Chronic Kidney Dis 25(3):224–229. https://doi.org/10.1053/j.ackd.2018.03.002 [DOI: 10.1053/j.ackd.2018.03.002]
  179. Reeves MA, Hoffmann PR (2009) The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 66(15):2457–2478. https://doi.org/10.1007/s00018-009-0032-4 [DOI: 10.1007/s00018-009-0032-4]
  180. Reilly C (1993) Selenium in health and disease. Aust J Nutr Diet 50:136–136
  181. Reilly C (2006) Selenium in food and health, 2nd edn. Springer, New York
  182. Riley J (2001) Rising life expectancy: a global history. Cambridge University Press, Cambridge [DOI: 10.1017/CBO9781316036495]
  183. Rizzoli R, Bianchi ML, Garabédian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46(2):294–305. https://doi.org/10.1016/j.bone.2009.10.005 [DOI: 10.1016/j.bone.2009.10.005]
  184. Rockey DC (2005) Occult gastrointestinal bleeding. Gastroenterol Clin N Am 34(4):699–718. https://doi.org/10.1016/j.gtc.2005.08.010 [DOI: 10.1016/j.gtc.2005.08.010]
  185. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6(1):25–54. https://doi.org/10.1039/c3mt00185g [DOI: 10.1039/c3mt00185g]
  186. Rouhani P, Rezaei Kelishadi M, Saneei P (2022) Effect of zinc supplementation on mortality in under 5-year children: a systematic review and meta-analysis of randomized clinical trials. Eur J Nutr 61(1):37–54. https://doi.org/10.1007/s00394-021-02604-1 [DOI: 10.1007/s00394-021-02604-1]
  187. Ryder KM, Shorr RI, Bush AJ, Kritchevsky SB, Harris T, Stone K et al (2005) Magnesium intake from food and supplements is associated with bone mineral density in healthy older white subjects. J Am Geriatr Soc 53(11):1875–1880. https://doi.org/10.1111/j.1532-5415.2005.53561.x [DOI: 10.1111/j.1532-5415.2005.53561.x]
  188. SACN (2011) Dietary reference values for energy. https://www.gov.uk/government/publications/sacn-dietary-reference-values-for-energy
  189. SACN (2013) SACN statement on selenium and health. https://www.gov.uk/government/publications/sacn-statement-on-selenium-and-health-2013
  190. Samtiya M, Aluko RE, Dhewa T (2020) Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod Process Nutr 2(1):6. https://doi.org/10.1186/s43014-020-0020-5 [DOI: 10.1186/s43014-020-0020-5]
  191. Sandstead HH (1995) Requirements and toxicity of essential trace elements, illustrated by zinc and copper. Am J Clin Nutr 61(3 Suppl):621S–624S. https://doi.org/10.1093/ajcn/61.3.621S [DOI: 10.1093/ajcn/61.3.621S]
  192. Sandstead HH (2000) Causes of iron and zinc deficiencies and their effects on brain. J Nutr 130(2S Suppl):347S–349S. https://doi.org/10.1093/jn/130.2.347S [DOI: 10.1093/jn/130.2.347S]
  193. Sandstrom B, Almgren A, Kivisto B, Cederblad A (1989) Effect of protein level and protein source on zinc absorption in humans. J Nutr 119(1):48–53. https://doi.org/10.1093/jn/119.1.48 [DOI: 10.1093/jn/119.1.48]
  194. Sang S, Pan X, Chen Z, Zeng F, Pan S, Liu H et al (2018) Thiamine diphosphate reduction strongly correlates with brain glucose hypometabolism in Alzheimer’s disease, whereas amyloid deposition does not. Alzheimers Res Ther 10(1):26. https://doi.org/10.1186/s13195-018-0354-2 [DOI: 10.1186/s13195-018-0354-2]
  195. Schaefer B, Tobiasch M, Wagner S, Glodny B, Tilg H, Wolf M, Zoller H (2022) Hypophosphatemia after intravenous iron therapy: comprehensive review of clinical findings and recommendations for management. Bone 154:116202. https://doi.org/10.1016/j.bone.2021.116202 [DOI: 10.1016/j.bone.2021.116202]
  196. Schlemmer U, Frølich W, Prieto RM, Grases F (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53(Suppl 2):S330–S375. https://doi.org/10.1002/mnfr.200900099 [DOI: 10.1002/mnfr.200900099]
  197. Schubert A, Holden J, Wolf W (1987) Selenium content of a core group of foods based on a critical evaluation of published analytical data. J Am Diet Assoc 87(3):285–299 [DOI: 10.1016/S0002-8223(21)03108-4]
  198. Scott BJ, Bradwell AR (1983) Identification of the serum binding proteins for iron, zinc, cadmium, nickel, and calcium. Clin Chem 29(4):629–633. https://www.ncbi.nlm.nih.gov/pubmed/6831689 [DOI: 10.1093/clinchem/29.4.629]
  199. Sekler I, Sensi SL, Hershfinkel M, Silverman WF (2007) Mechanism and regulation of cellular zinc transport. Mol Med 13(7–8):337–343. https://doi.org/10.2119/2007-00037.Sekler [DOI: 10.2119/2007-00037.Sekler]
  200. Semba RD, Bartali B, Zhou J, Blaum C, Ko CW, Fried LP (2006) Low serum micronutrient concentrations predict frailty among older women living in the community. J Gerontol A Biol Sci Med Sci 61(6):594–599. https://doi.org/10.1093/gerona/61.6.594 [DOI: 10.1093/gerona/61.6.594]
  201. Semrin G, Fishman DS, Bousvaros A, Zholudev A, Saunders AC, Correia CE et al (2006) Impaired intestinal iron absorption in Crohn’s disease correlates with disease activity and markers of inflammation. Inflamm Bowel Dis 12(12):1101–1106. https://doi.org/10.1097/01.mib.0000235097.86360.04 [DOI: 10.1097/01.mib.0000235097.86360.04]
  202. Sharp P, Srai SK (2007) Molecular mechanisms involved in intestinal iron absorption. World J Gastroenterol 13(35):4716–4724. https://doi.org/10.3748/wjg.v13.i35.4716 [DOI: 10.3748/wjg.v13.i35.4716]
  203. Shepshelovich D, Rozen-Zvi B, Avni T, Gafter U, Gafter-Gvili A (2016) Intravenous versus oral iron supplementation for the treatment of anemia in CKD: an updated systematic review and meta-analysis. Am J Kidney Dis 68(5):677–690. https://doi.org/10.1053/j.ajkd.2016.04.018 [DOI: 10.1053/j.ajkd.2016.04.018]
  204. Silay K, Akinci S, Yalcin A, Guney T, Ulas A, Ozer O et al (2015) The status of iron absorption in older patients with iron deficiency anemia. Eur Rev Med Pharmacol Sci 19(17):3142–3145. https://www.ncbi.nlm.nih.gov/pubmed/26400514 [PMID: 26400514]
  205. Silva JGS, Rebellato AP, Abreu JS, Greiner R, Pallone JAL (2022) Impact of the fortification of a rice beverage with different calcium and iron sources on calcium and iron bioaccessibility. Food Res Int 161:111830. https://doi.org/10.1016/j.foodres.2022.111830 [DOI: 10.1016/j.foodres.2022.111830]
  206. Silverstein SB, Gilreath JA, Rodgers GM (2008) Intravenous iron therapy: a summary of treatment options and review of guidelines. J Pharm Pract 21(6):431–443. https://doi.org/10.1177/0897190008318916 [DOI: 10.1177/0897190008318916]
  207. Slusarczyk P, Mleczko-Sanecka K (2021) The multiple facets of iron recycling. Genes (Basel) 12(9):1364. https://doi.org/10.3390/genes12091364 [DOI: 10.3390/genes12091364]
  208. Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86(3):373–389. https://doi.org/10.1007/s11120-005-5222-9 [DOI: 10.1007/s11120-005-5222-9]
  209. Stamp TC, Round JM, Rowe DJ, Haddad JG (1972) Plasma levels and therapeutic effect of 25-hydroxycholecalciferol in epileptic patients taking anticonvulsant drugs. Br Med J 4(5831):9–12. https://doi.org/10.1136/bmj.4.5831.9 [DOI: 10.1136/bmj.4.5831.9]
  210. Steere AN, Byrne SL, Chasteen ND, Mason AB (2012) Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH. Biochim Biophys Acta 1820(3):326–333. https://doi.org/10.1016/j.bbagen.2011.06.003 [DOI: 10.1016/j.bbagen.2011.06.003]
  211. Stefánka Z, Ipolyi I, Dernovics M, Fodor P (2001) Comparison of sample preparation methods based on proteolytic enzymatic processes for Se-speciation of edible mushroom (Agaricus bisporus) samples. Talanta 55(3):437–447 [DOI: 10.1016/S0039-9140(01)00398-8]
  212. Stepura OB, Martynow AI (2009) Magnesium orotate in severe congestive heart failure (MACH). Int J Cardiol 134:145–147 [DOI: 10.1016/j.ijcard.2009.01.047]
  213. Stewart-Knox BJ, Simpson EE, Parr H, Rae G, Polito A, Intorre F et al (2005) Zinc status and taste acuity in older Europeans: the ZENITH study. Eur J Clin Nutr 59(Suppl 2):S31–S36. https://doi.org/10.1038/sj.ejcn.1602295 [DOI: 10.1038/sj.ejcn.1602295]
  214. Stoffaneller R, Morse NL (2015) A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients 7(3):1494–1537. https://doi.org/10.3390/nu7031494 [DOI: 10.3390/nu7031494]
  215. Swain JH, Tabatabai LB, Reddy MB (2002) Histidine content of low-molecular-weight beef proteins influences nonheme iron bioavailability in Caco-2 cells. J Nutr 132(2):245–251. https://doi.org/10.1093/jn/132.2.245 [DOI: 10.1093/jn/132.2.245]
  216. Takeda E, Sakamoto K, Yokota K, Shinohara M, Taketani Y, Morita K et al (2002) Phosphorus supply per capita from food in Japan between 1960 and 1995. J Nutr Sci Vitaminol (Tokyo) 48(2):102–108. https://doi.org/10.3177/jnsv.48.102 [DOI: 10.3177/jnsv.48.102]
  217. Takeda E, Yamamoto H, Yamanaka-Okumura H, Taketani Y (2014) Increasing dietary phosphorus intake from food additives: potential for negative impact on bone health. Adv Nutr 5(1):92–97. https://doi.org/10.3945/an.113.004002 [DOI: 10.3945/an.113.004002]
  218. Tay HS, Soiza RL (2015) Systematic review and meta-analysis: what is the evidence for oral iron supplementation in treating anaemia in elderly people? Drugs Aging 32(2):149–158. https://doi.org/10.1007/s40266-015-0241-5 [DOI: 10.1007/s40266-015-0241-5]
  219. Thiry C, Ruttens A, De Temmerman L, Schneider Y-J, Pussemier L (2012) Current knowledge in species-related bioavailability of selenium in food. Food Chem 130(4):767–784. https://doi.org/10.1016/j.foodchem.2011.07.102 [DOI: 10.1016/j.foodchem.2011.07.102]
  220. Thomson CD, Chisholm A, McLachlan SK, Campbell JM (2008) Brazil nuts: an effective way to improve selenium status. Am J Clin Nutr 87(2):379–384 [DOI: 10.1093/ajcn/87.2.379]
  221. Thorn J, Robertson J, Buss DH, Bunton NG (1978) Trace nutrients. Selenium in British food. Br J Nutr 39(2):391–396. https://doi.org/10.1079/BJN19780049 [DOI: 10.1079/BJN19780049]
  222. Toblli JE, Brignoli R (2007) Iron(III)-hydroxide polymaltose complex in iron deficiency anemia / review and meta-analysis. Arzneimittelforschung 57(6A):431–438. https://doi.org/10.1055/s-0031-1296692 [DOI: 10.1055/s-0031-1296692]
  223. Topf JM, Murray PT (2003) Hypomagnesemia and hypermagnesemia. Rev Endocr Metab Disord 4(2):195–206. https://doi.org/10.1023/a:1022950321817 [DOI: 10.1023/a]
  224. Tucker KL (2014) Vegetarian diets and bone status. Am J Clin Nutr 100(Suppl 1):329s–335s. https://doi.org/10.3945/ajcn.113.071621 [DOI: 10.3945/ajcn.113.071621]
  225. Turner J, Gittoes N, Selby P, Society for Endocrinology Clinical Committee (2016) Society for Endocrinology Endocrine Emergency Guidance: emergency management of acute hypocalcaemia in adult patients. Endocr Connect 5(5):G7–G8. https://doi.org/10.1530/EC-16-0056 [DOI: 10.1530/EC-16-0056]
  226. Tyrovola D, Soulaidopoulos S, Tsioufis C, Lazaros G (2023) The role of nutrition in cardiovascular disease: current concepts and trends. Nutrients 15(5):1064. https://doi.org/10.3390/nu15051064 [DOI: 10.3390/nu15051064]
  227. US Department of Agriculture, A. R. S. (2019) Usual nutrient intake from food and beverages, by gender and age, what we eat in America, NHANES 2013–2016. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/usual/Usual_Intake_gender_WWEIA_2013_2016.pdf
  228. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118. https://doi.org/10.1152/physrev.1993.73.1.79 [DOI: 10.1152/physrev.1993.73.1.79]
  229. van de Wal-Visscher ER, Kooman JP, van der Sande FM (2018) Magnesium in chronic kidney disease: should we care? Blood Purif 45(1–3, 173):–178. https://doi.org/10.1159/000485212
  230. van Staa TP, Dennison EM, Leufkens HG, Cooper C (2001) Epidemiology of fractures in England and Wales. Bone 29(6):517–522. https://doi.org/10.1016/s8756-3282(01)00614-7 [DOI: 10.1016/s8756-3282(01)00614-7]
  231. Veronese N, Berton L, Carraro S, Bolzetta F, De Rui M, Perissinotto E et al (2014) Effect of oral magnesium supplementation on physical performance in healthy elderly women involved in a weekly exercise program: a randomized controlled trial. Am J Clin Nutr 100(3):974–981. https://doi.org/10.3945/ajcn.113.080168 [DOI: 10.3945/ajcn.113.080168]
  232. Veronese N, Stubbs B, Solmi M, Noale M, Vaona A, Demurtas J, Maggi S (2017) Dietary magnesium intake and fracture risk: data from a large prospective study. Br J Nutr 117(11):1570–1576. https://doi.org/10.1017/s0007114517001350 [DOI: 10.1017/s0007114517001350]
  233. Veronese N, Demurtas J, Pesolillo G, Celotto S, Barnini T, Calusi G et al (2020) Magnesium and health outcomes: an umbrella review of systematic reviews and meta-analyses of observational and intervention studies. Eur J Nutr 59(1):263–272. https://doi.org/10.1007/s00394-019-01905-w [DOI: 10.1007/s00394-019-01905-w]
  234. Vural Z, Avery A, Kalogiros DI, Coneyworth LJ, Welham SJM (2020) Trace mineral intake and deficiencies in older adults living in the community and institutions: a systematic review. Nutrients 12(4). https://doi.org/10.3390/nu12041072
  235. Wallace DF (2016) The regulation of iron absorption and homeostasis. Clin Biochem Rev 37(2):51–62. https://www.ncbi.nlm.nih.gov/pubmed/28303071 [PMID: 28303071]
  236. Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J (2002) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 71(1):66–73. https://doi.org/10.1086/341125 [DOI: 10.1086/341125]
  237. Watkins DA, Msemburi WT, Pickersgill SJ, Kawakatsu Y, Gheorghe A, Dain K et al (2022) NCD countdown 2030: efficient pathways and strategic investments to accelerate progress towards the sustainable development goal target 3.4 in low-income and middle-income countries. Lancet 399(10331):1266–1278. https://doi.org/10.1016/s0140-6736(21)02347-3 [DOI: 10.1016/s0140-6736(21)02347-3]
  238. Wawer AA, Jennings A, Fairweather-Tait SJ (2018) Iron status in the elderly: a review of recent evidence. Mech Ageing Dev 175:55–73. https://doi.org/10.1016/j.mad.2018.07.003 [DOI: 10.1016/j.mad.2018.07.003]
  239. Weaver CM, Peacock M (2011) Calcium. Adv Nutr 2(3):290–292. https://doi.org/10.3945/an.111.000463 [DOI: 10.3945/an.111.000463]
  240. Weaver CM, Alexander DD, Boushey CJ, Dawson-Hughes B, Lappe JM, LeBoff MS et al (2016) Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos Int 27(1):367–376. https://doi.org/10.1007/s00198-015-3386-5 [DOI: 10.1007/s00198-015-3386-5]
  241. Weekley CM, Harris HH (2013) Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev 42(23):8870–8894 [DOI: 10.1039/c3cs60272a]
  242. Wegmuller R, Tay F, Zeder C, Brnic M, Hurrell RF (2014) Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide. J Nutr 144(2):132–136. https://doi.org/10.3945/jn.113.181487 [DOI: 10.3945/jn.113.181487]
  243. White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen W, Spiby R et al (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55(404):1927–1937 [DOI: 10.1093/jxb/erh192]
  244. WHO (2019) World Health Organization Noncommunicable Diseases (NCD). https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ncd-mortality
  245. Wongdee K, Charoenphandhu N (2015) Vitamin D-enhanced duodenal calcium transport. Vitam Horm 98:407–440. https://doi.org/10.1016/bs.vh.2014.12.010 [DOI: 10.1016/bs.vh.2014.12.010]
  246. Workinger JL, Doyle RP, Bortz J (2018) Challenges in the diagnosis of magnesium status. Nutrients 10(9). https://doi.org/10.3390/nu10091202
  247. Xu ZP, Li L, Bao J, Wang ZH, Zeng J, Liu EJ et al (2014) Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer’s model. PLoS One 9(9):e108645. https://doi.org/10.1371/journal.pone.0108645 [DOI: 10.1371/journal.pone.0108645]
  248. Winkel LHE, Johnson CA, Lenz M, Grundl T, Leupin OX, Amini M, Charlet L (2012) Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol. 46(2):571–9. https://doi.org/10.1021/es203434d
  249. Wrobel JK, Power R, Toborek M (2016) Biological activity of selenium: Revisited. IUBMB Life. 68(2):97–105. https://doi.org/10.1002/iub.1466
  250. Yamanaka H, Nakajima M, Katoh M, Yokoi T (2007) Glucuronidation of thyroxine in human liver, jejunum, and kidney microsomes. Drug Metab Dispos 35(9):1642–1648. https://doi.org/10.1124/dmd.107.016097 [DOI: 10.1124/dmd.107.016097]
  251. Yildirim T, Yalcin A, Atmis V, Cengiz OK, Aras S, Varlı M, Atli T (2015) The prevalence of anemia, iron, vitamin B12, and folic acid deficiencies in community dwelling elderly in Ankara, Turkey. Arch Gerontol Geriatr 60(2):344–348. https://doi.org/10.1016/j.archger.2015.01.001 [DOI: 10.1016/j.archger.2015.01.001]
  252. Zhao Y, Li Z, Shi Y, Cao G, Meng F, Zhu W, Yang GE (2016) Effect of hypophosphatemia on the withdrawal of mechanical ventilation in patients with acute exacerbations of chronic obstructive pulmonary disease. Biomed Rep 4(4):413–416. https://doi.org/10.3892/br.2016.605 [DOI: 10.3892/br.2016.605]
  253. Zhu Y, Minović I, Dekker LH, Eggersdorfer ML, van Zon SKR, Reijneveld SA et al (2020) Vitamin status and diet in elderly with low and high socioeconomic status: the lifelines-MINUTHE study. Nutrients 12(9):2659. https://doi.org/10.3390/nu12092659 [DOI: 10.3390/nu12092659]
  254. Zilinski J, Zillmann R, Becker I, Benzing T, Schulz RJ, Roehrig G (2014) Prevalence of anemia among elderly inpatients and its association with multidimensional loss of function. Ann Hematol 93(10):1645–1654. https://doi.org/10.1007/s00277-014-2110-4 [DOI: 10.1007/s00277-014-2110-4]

MeSH Term

Humans
Dietary Supplements
Aging
Minerals
Animals
Zinc
Iron

Chemicals

Minerals
Zinc
Iron

Word Cloud

Created with Highcharts 10.0.0mineralsminerallevelsabsorptionincludingrequiredsupplementationMineralAgeingadvancingageachievementdietaryadequacynutrientsincreasinglydifficultparticularlyVariousfactorsimpedeacquisitionreducedappetitedepressedgastricacidproductiondysregulationacrossrangesignallingpathwaysintestinalmucosaMineralssufficientsincecriticalproperfunctioningmetabolicprocessescellstissuesenergymetabolismDNAproteinsynthesisimmunefunctionmobilityskeletalintegrityuptakediminishedlossexceedsalternativeapproachesenableindividualsmaintainadequateCurrentlyusedeffectivelypopulationsrestorationlikeironzinccalciummaywithoutinherentchallengesThereforechapterreviewcurrentunderstandingaroundeffectivenessclinicallyrelevantelderlySupplementsCalciumIronMagnesiumMicronutrientNutritionPhosphorusSeleniumSupplementZinc

Similar Articles

Cited By