Eco-friendly green synthesis of silver nanoparticles from guajava leaves extract for controlling organophosphorus pesticides hazards, characterization, and in-vivo toxicity assessment.

Emad Ali Albadawi, Eid Nassar Ali Musa, Hadel Mahroos Ghaban, Neven A Ebrahim, Muayad Saud Albadrani, Ahmed I El-Tokhy
Author Information
  1. Emad Ali Albadawi: Department of Basic Medical Sciences, College of Medicine, Taibah University, Al-Madinah Al- Munawara, Saudi Arabia. ebadawi@taibahu.edu.sa.
  2. Eid Nassar Ali Musa: Department of Basic Medical Sciences, College of Medicine, Taibah University, Al-Madinah Al- Munawara, Saudi Arabia.
  3. Hadel Mahroos Ghaban: Department of Basic Medical Sciences, College of Medicine, Taibah University, Al-Madinah Al- Munawara, Saudi Arabia.
  4. Neven A Ebrahim: Department of Basic Medical Sciences, College of Medicine, Taibah University, Al-Madinah Al- Munawara, Saudi Arabia.
  5. Muayad Saud Albadrani: Department of Family and Community Medicine and Medical Education, College of Medicine, Taibah University, Al-Madinah Al-Munawara, Saudi Arabia. mbadrani@taibahu.edu.sa.
  6. Ahmed I El-Tokhy: Plant Protection Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt.

Abstract

This study explores an eco-friendly approach to mitigate risks associated with organophosphorus insecticides, particularly Chlorpyrifos, by synthesizing silver nanoparticles (AgNPs) using Psidium guajava leaf extract and preparing a nanocomposite (AgNPs/S18) with Chlorpyrifos pesticide. The green-synthesized AgNPs and AgNPs/S18 nanocomposite were characterized using various analytical techniques, confirming the successful synthesis of AgNPs with an average size of 37 nm and forming a stable nanocomposite. Antibacterial assays demonstrated significant activity against Staphylococcus aureus, with AgNPs showing an 87.8% reduction and the nanocomposite achieving a 72% reduction in bacterial population. cytotoxicity evaluations on normal liver and liver cancer cell lines revealed enhanced cytotoxicity of the nanocomposite compared to AgNPs alone, suggesting potential applications in targeted therapies. In vivo studies on rats revealed the protective effects of AgNPs and the nanocomposite against Chlorpyrifos-induced toxicity in liver and kidney tissues. Histopathological and ultrastructural analyses showed both treatments, particularly the nanocomposite, significantly mitigated cellular damage caused by Chlorpyrifos exposure. These findings suggest that green-synthesized AgNPs and their nanocomposite with Chlorpyrifos offer a promising approach to reducing pesticide hazards while maintaining efficacy. This research contributes to developing safer alternatives in pest management, addressing the need for more environmentally friendly agricultural practices while protecting human health and ecosystems.

Keywords

References

  1. Ann Agric Environ Med. 2015;22(1):84-9 [PMID: 25780834]
  2. Eur Respir Rev. 2015 Jun;24(136):306-19 [PMID: 26028642]
  3. J Microsc Ultrastruct. 2019 Oct-Dec;7(4):153-164 [PMID: 31803569]
  4. ScientificWorldJournal. 2014 Jan 15;2014:829894 [PMID: 24558336]
  5. Biomolecules. 2019 Dec 11;9(12): [PMID: 31835898]
  6. Langmuir. 2012 Feb 7;28(5):2671-9 [PMID: 22239644]
  7. Dose Response. 2022 Apr 30;20(1):15593258221088709 [PMID: 35592270]
  8. Microbiome. 2019 Feb 11;7(1):19 [PMID: 30744700]
  9. PLoS One. 2014 Oct 27;9(10):e111141 [PMID: 25347680]
  10. Sci Total Environ. 2022 Feb 10;807(Pt 3):151879 [PMID: 34826476]
  11. PLoS One. 2021 Feb 11;16(2):e0246880 [PMID: 33571310]
  12. Pathogens. 2020 Feb 26;9(3): [PMID: 32110981]
  13. Int J Cancer. 2023 Mar 1;152(5):879-912 [PMID: 36134639]
  14. Nanomaterials (Basel). 2023 May 02;13(9): [PMID: 37177076]
  15. J Immunol Methods. 1994 Sep 14;174(1-2):311-20 [PMID: 8083535]
  16. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):341-352 [PMID: 30691311]
  17. Nanoscale. 2018 Jul 13;10(27):12871-12934 [PMID: 29926865]
  18. Chemosphere. 2022 Jan;286(Pt 2):131761 [PMID: 34375828]
  19. Nanomaterials (Basel). 2021 Aug 18;11(8): [PMID: 34443930]
  20. J Fungi (Basel). 2022 Aug 28;8(9): [PMID: 36135636]
  21. Mater Sci Eng C Mater Biol Appl. 2018 May 1;86:1-8 [PMID: 29525084]
  22. Ultrastruct Pathol. 2021 Jan 2;45(1):19-27 [PMID: 33530839]
  23. Environ Res. 2023 Aug 15;231(Pt 1):115941 [PMID: 37100366]
  24. Colloids Surf B Biointerfaces. 2013 Jul 1;107:227-34 [PMID: 23500733]
  25. Int J Mol Sci. 2021 Nov 05;22(21): [PMID: 34769419]
  26. Clin J Am Soc Nephrol. 2016 Jun 6;11(6):993-1004 [PMID: 27076636]
  27. Front Microbiol. 2019 Apr 26;10:820 [PMID: 31110495]
  28. Bioorg Chem. 2020 Jan;94:103425 [PMID: 31740048]
  29. Spectrochim Acta A Mol Biomol Spectrosc. 2014 Jun 5;127:61-6 [PMID: 24632157]
  30. Nat Nanotechnol. 2022 Apr;17(4):347-360 [PMID: 35332293]
  31. Pest Manag Sci. 2019 Mar;75(3):828-834 [PMID: 30141238]
  32. J Environ Manage. 2018 Jan 15;206:749-762 [PMID: 29161677]
  33. J Control Release. 2006 Oct 27;115(3):259-65 [PMID: 17010467]
  34. Cancer Res. 1988 Feb 1;48(3):589-601 [PMID: 3335022]
  35. Artif Cells Nanomed Biotechnol. 2016 Sep;44(6):1569-75 [PMID: 26212222]
  36. Front Microbiol. 2022 Feb 16;13:820048 [PMID: 35250934]
  37. BMC Public Health. 2010 Feb 19;10:80 [PMID: 20167129]
  38. Heliyon. 2024 Apr 04;10(7):e29128 [PMID: 38623208]
  39. Anat Cell Biol. 2023 Dec 31;56(4):538-551 [PMID: 37696756]
  40. Biosensors (Basel). 2022 Jul 27;12(8): [PMID: 36004968]
  41. Signal Transduct Target Ther. 2023 Sep 6;8(1):333 [PMID: 37669960]
  42. J Genet Eng Biotechnol. 2017 Jun;15(1):31-39 [PMID: 30647639]
  43. J Neurochem. 2017 Aug;142 Suppl 2:162-177 [PMID: 28791702]
  44. Methods Mol Biol. 2005;290:231-47 [PMID: 15361666]
  45. Ann Agric Environ Med. 2020 Jun 19;27(2):194-200 [PMID: 32588592]
  46. Iran J Pharm Res. 2017 Spring;16(2):685-693 [PMID: 28979323]
  47. Microb Pathog. 2018 Mar;116:215-220 [PMID: 29366863]
  48. Animals (Basel). 2021 Feb 16;11(2): [PMID: 33669202]
  49. Sci Rep. 2023 Jun 29;13(1):10539 [PMID: 37386048]
  50. Mikrochim Acta. 2020 Jan 15;187(2):131 [PMID: 31940088]
  51. J Funct Biomater. 2020 Nov 26;11(4): [PMID: 33255874]
  52. J Microsc Ultrastruct. 2018 Oct-Dec;6(4):192-196 [PMID: 30464892]
  53. Materials (Basel). 2023 Jul 26;16(15): [PMID: 37569948]
  54. J Toxicol Environ Health B Crit Rev. 2012;15(4):238-63 [PMID: 22571220]
  55. Biomed Rep. 2017 May;6(5):513-518 [PMID: 28529733]
  56. J Atten Disord. 2022 Jan;26(1):48-71 [PMID: 32697136]
  57. Mater Sci Eng C Mater Biol Appl. 2020 Nov;116:111253 [PMID: 32806227]
  58. Clin Chem Lab Med. 2006;44(6):750-9 [PMID: 16729864]
  59. ACS Omega. 2020 Jan 14;5(3):1607-1615 [PMID: 32010835]
  60. Sci Total Environ. 2021 Feb 10;755(Pt 2):142649 [PMID: 33059141]
  61. J Appl Toxicol. 2014 Nov;34(11):1155-66 [PMID: 24522958]
  62. J Commun Disord. 2015 Sep-Oct;57:41-65 [PMID: 26255253]
  63. Mini Rev Med Chem. 2017;17(17):1665-1676 [PMID: 28117022]
  64. Int J Mol Sci. 2017 Mar 06;18(3): [PMID: 28272303]
  65. Environ Sci Pollut Res Int. 2021 Mar;28(11):13055-13071 [PMID: 33483929]
  66. Sci Total Environ. 2022 Aug 15;834:155219 [PMID: 35421493]
  67. J Agric Food Chem. 2019 Sep 25;67(38):10553-10562 [PMID: 31490076]
  68. Mater Sci Eng C Mater Biol Appl. 2018 Apr 1;85:214-224 [PMID: 29407150]
  69. Pestic Biochem Physiol. 2022 Jul;185:105138 [PMID: 35772841]
  70. Curr Issues Mol Biol. 2024 Mar 06;46(3):2133-2143 [PMID: 38534753]
  71. ACS Biomater Sci Eng. 2018 Sep 10;4(9):3434-3449 [PMID: 33435077]
  72. Biochim Biophys Acta. 1963 Nov 8;77:383-93 [PMID: 14089413]
  73. Int J Nanomedicine. 2019 Nov 07;14:8787-8804 [PMID: 31806972]
  74. RSC Adv. 2023 Jun 23;13(28):19164-19172 [PMID: 37362338]
  75. Pharm Res. 2020 Nov 19;37(12):246 [PMID: 33215292]
  76. Chemosphere. 2023 Feb;313:137459 [PMID: 36470360]
  77. Sci Rep. 2020 Nov 12;10(1):19615 [PMID: 33184403]
  78. Molecules. 2019 Dec 27;25(1): [PMID: 31892180]
  79. J Agric Food Chem. 2021 Jun 9;69(22):6303-6317 [PMID: 34048223]
  80. Adv Exp Med Biol. 2018;1048:227-250 [PMID: 29453542]

Grants

  1. 442/223/Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

MeSH Term

Animals
Plant Extracts
Silver
Plant Leaves
Metal Nanoparticles
Chlorpyrifos
Green Chemistry Technology
Humans
Psidium
Rats
Male
Staphylococcus aureus
Liver
Anti-Bacterial Agents
Pesticides
Kidney
Insecticides

Chemicals

Plant Extracts
Silver
Chlorpyrifos
Anti-Bacterial Agents
Pesticides
Insecticides

Word Cloud

Created with Highcharts 10.0.0AgNPsnanocompositeChlorpyrifosnanoparticlesextractsynthesisliverapproachorganophosphorusinsecticidesparticularlysilverusingguajavaleafAgNPs/S18pesticidegreen-synthesizedreductionrevealedtoxicityhazardsstudyexploreseco-friendlymitigaterisksassociatedsynthesizingPsidiumpreparingcharacterizedvariousanalyticaltechniquesconfirmingsuccessfulaveragesize37 nmformingstableAntibacterialassaysdemonstratedsignificantactivityStaphylococcusaureusshowing878%achieving72%bacterialpopulationCytotoxicityevaluationsnormalcancercelllinesenhancedcytotoxicitycomparedalonesuggestingpotentialapplicationstargetedtherapiesvivostudiesratsprotectiveeffectsChlorpyrifos-inducedkidneytissuesHistopathologicalultrastructuralanalysesshowedtreatmentssignificantlymitigatedcellulardamagecausedexposurefindingssuggestofferpromisingreducingmaintainingefficacyresearchcontributesdevelopingsaferalternativespestmanagementaddressingneedenvironmentallyfriendlyagriculturalpracticesprotectinghumanhealthecosystemsEco-friendlygreenleavescontrollingpesticidescharacterizationin-vivoassessmentGreenGuavaMTTassayNanocompositeOrganophosphorusSilver

Similar Articles

Cited By

No available data.