Advancements in Clinical Evaluation and Regulatory Frameworks for AI-Driven Software as a Medical Device (SaMD).

Shiau-Ru Yang, Jen-Tzung Chien, Chen-Yi Lee
Author Information
  1. Shiau-Ru Yang: Institute of Electrical and Computer EngineeringNational Yang Ming Chiao Tung University Hsinchu 30010 Taiwan. ORCID
  2. Jen-Tzung Chien: Institute of Electrical and Computer EngineeringNational Yang Ming Chiao Tung University Hsinchu 30010 Taiwan. ORCID
  3. Chen-Yi Lee: Institute of Electrical and Computer EngineeringNational Yang Ming Chiao Tung University Hsinchu 30010 Taiwan. ORCID

Abstract

Owing to the rapid progress in artificial intelligence (AI) and the widespread use of generative learning, the problem of sparse data has been solved effectively in various research fields. The application of AI technologies has resulted in important transformations in healthcare, particularly in radiology. To ensure the high quality, safety, and effectiveness of AI and machine learning (ML) medical devices, the US Food and Drug Administration (FDA) has established regulatory guidelines to support the performance evaluation of medical devices. Furthermore, the FDA has proposed continuous surveillance requirements for AI/ML medical devices. This paper presents a summary of SaMD products that have passed the FDA 510 (k) AI/ML pathway, the challenges associated with the current AI/ML software-as-a-medical-device, and solutions for promoting the development of AI technologies in medicine. We hope to provide valuable information pertaining to medical-device design, development, and monitoring to ultimately achieve safer and more effective personalized medical services.

Keywords

References

  1. Lancet. 1986 Feb 8;1(8476):307-10 [PMID: 2868172]
  2. NPJ Digit Med. 2024 Mar 26;7(1):80 [PMID: 38531952]
  3. BMJ Qual Saf. 2013 Aug;22(8):672-80 [PMID: 23610443]
  4. JAMA Netw Open. 2023 Jul 3;6(7):e2321792 [PMID: 37405771]
  5. JAMA Intern Med. 2015 Nov;175(11):1828-37 [PMID: 26414882]
  6. JAMA Intern Med. 2017 May 1;177(5):710-718 [PMID: 28346582]
  7. Nat Rev Cancer. 2021 Mar;21(3):199-211 [PMID: 33514930]
  8. Expert Rev Med Devices. 2021 Dec;18(sup1):5-8 [PMID: 34845960]
  9. Nat Med. 2019 Jan;25(1):44-56 [PMID: 30617339]
  10. Stat Med. 1999 Aug 15;18(15):1903-42 [PMID: 10440877]
  11. NPJ Digit Med. 2020 Apr 7;3:53 [PMID: 32285013]
  12. Nat Med. 2023 Dec;29(12):3033-3043 [PMID: 37985692]
  13. Acad Radiol. 2010 Jun;17(6):761-7 [PMID: 20457419]
  14. BMC Med Res Methodol. 2022 Nov 5;22(1):287 [PMID: 36335315]
  15. J Biopharm Stat. 2007;17(4):697-719 [PMID: 17613649]
  16. JMIR AI. 2023 Jan 16;2:e42940 [PMID: 38875544]
  17. BMJ Qual Saf. 2024 Jan 19;33(2):109-120 [PMID: 37460118]
  18. Radiology. 2024 Jan;310(1):e230242 [PMID: 38165243]
  19. J Am Coll Radiol. 2018 Jan;15(1 Pt A):44-48 [PMID: 28993109]
  20. JAMA Health Forum. 2022 Feb 4;3(2):e215207 [PMID: 36218833]
  21. Nat Med. 2021 Apr;27(4):582-584 [PMID: 33820998]

Word Cloud

Created with Highcharts 10.0.0medicalAIAI/MLdevicesFDASaMDcomputer-aidedlearningtechnologiesdevelopmentSoftwareOwingrapidprogressartificialintelligencewidespreadusegenerativeproblemsparsedatasolvedeffectivelyvariousresearchfieldsapplicationresultedimportanttransformationshealthcareparticularlyradiologyensurehighqualitysafetyeffectivenessmachineMLUSFoodDrugAdministrationestablishedregulatoryguidelinessupportperformanceevaluationFurthermoreproposedcontinuoussurveillancerequirementspaperpresentssummaryproductspassed510kpathwaychallengesassociatedcurrentsoftware-as-a-medical-devicesolutionspromotingmedicinehopeprovidevaluableinformationpertainingmedical-devicedesignmonitoringultimatelyachievesafereffectivepersonalizedservicesAdvancementsClinicalEvaluationRegulatoryFrameworksAI-DrivenMedicalDevicedevicedetectionCADediagnosisCADxtriageCADt

Similar Articles

Cited By