Improving the reporting of metagenomic virome-scale data.

Wei-Shan Chang, Erin Harvey, Jackie E Mahar, Cadhla Firth, Mang Shi, Etienne Simon-Loriere, Jemma L Geoghegan, Michelle Wille
Author Information
  1. Wei-Shan Chang: School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia. ORCID
  2. Erin Harvey: School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia. ORCID
  3. Jackie E Mahar: School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia. ORCID
  4. Cadhla Firth: College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Australia. ORCID
  5. Mang Shi: Sun Yat-Sen University, Shenzhen campus of Sun Yat-Sen University, Shenzhen, China. ORCID
  6. Etienne Simon-Loriere: Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France. ORCID
  7. Jemma L Geoghegan: Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand. ORCID
  8. Michelle Wille: School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia. michelle.wille@unimelb.edu.au. ORCID

Abstract

Over the last decade metagenomic sequencing has facilitated an increasing number of virome-scale studies, leading to an exponential expansion in understanding of virus diversity. This is partially driven by the decreasing costs of metagenomic sequencing, improvements in computational tools for revealing novel viruses, and an increased understanding of the key role that viruses play in human and animal health. A central concern associated with this remarkable increase in the number of virome-scale studies is the lack of broadly accepted "gold standards" for reporting the data and results generated. This is of particular importance for animal virome studies as there are a multitude of nuanced approaches for both data presentation and analysis, all of which impact the resulting outcomes. As such, the results of published studies can be difficult to contextualise and may be of reduced utility due to reporting deficiencies. Herein, we aim to address these reporting issues by outlining recommendations for the presentation of virome data, encouraging a transparent communication of findings that can be interpreted in evolutionary and ecological contexts.

References

  1. Genome Med. 2024 Apr 25;16(1):61 [PMID: 38659008]
  2. Open Biol. 2017 Oct;7(10): [PMID: 29070612]
  3. Curr Opin Virol. 2021 Dec;51:48-55 [PMID: 34592710]
  4. Emerg Infect Dis. 2013 Nov;19(11):1819-23 [PMID: 24206838]
  5. Mol Ecol. 2023 Sep;32(17):4763-4776 [PMID: 36367339]
  6. PLoS One. 2014 Feb 19;9(2):e88888 [PMID: 24586429]
  7. PLoS Pathog. 2017 Feb 8;13(2):e1006215 [PMID: 28178344]
  8. Curr Opin Virol. 2021 Dec;51:207-215 [PMID: 34781105]
  9. Microbiome. 2023 May 8;11(1):103 [PMID: 37158954]
  10. Science. 2022 Jun 10;376(6598):1202-1208 [PMID: 35679415]
  11. PLoS Biol. 2023 Apr 21;21(4):e3002083 [PMID: 37083735]
  12. Comp Immunol Microbiol Infect Dis. 2022 Nov-Dec;90-91:101892 [PMID: 36274336]
  13. Viruses. 2021 Oct 21;13(11): [PMID: 34834931]
  14. Bioinformatics. 2023 May 4;39(5): [PMID: 37129547]
  15. Clin Chem. 2009 Apr;55(4):611-22 [PMID: 19246619]
  16. Nat Biotechnol. 2019 Jan;37(1):29-37 [PMID: 30556814]
  17. Bioinformatics. 2023 May 4;39(5): [PMID: 37171896]
  18. Bioinformatics. 2023 Jan 1;39(1): [PMID: 36579886]
  19. Nature. 2017 Nov 23;551(7681):457-463 [PMID: 29088705]
  20. Vet Microbiol. 2023 Nov;286:109895 [PMID: 37890432]
  21. Arch Virol. 2022 Apr;167(4):1231-1234 [PMID: 35043230]
  22. Nat Commun. 2023 Jan 31;14(1):502 [PMID: 36720887]
  23. J Virol. 2019 May 15;93(11): [PMID: 30867308]
  24. PLoS Pathog. 2020 Aug 3;16(8):e1008759 [PMID: 32745135]
  25. Nat Biotechnol. 2021 May;39(5):578-585 [PMID: 33349699]
  26. PLoS Biol. 2023 Feb 13;21(2):e3001922 [PMID: 36780432]
  27. Nat Rev Microbiol. 2021 Aug;19(8):514-527 [PMID: 33785903]
  28. Heliyon. 2023 Feb 28;9(3):e14020 [PMID: 36915549]
  29. J Gen Virol. 2017 Jan;98(1):2-3 [PMID: 28218572]
  30. Nat Biotechnol. 2011 May;29(5):415-20 [PMID: 21552244]
  31. Science. 2018 Nov 2;362(6414):577-580 [PMID: 30385576]
  32. BMC Genomics. 2017 Mar 23;18(1):249 [PMID: 28335731]
  33. Nat Microbiol. 2024 Mar;9(3):737-750 [PMID: 38321183]
  34. Sci Total Environ. 2022 May 10;820:153317 [PMID: 35066043]
  35. Microbiome. 2017 Aug 7;5(1):90 [PMID: 28780905]
  36. J Virol. 2023 Oct 31;97(10):e0105623 [PMID: 37830816]
  37. ISME J. 2014 Sep;8(9):1753-67 [PMID: 24646696]
  38. Clin Microbiol Infect. 2019 Oct;25(10):1277-1285 [PMID: 31059795]
  39. Virology. 2021 Sep;561:98-106 [PMID: 34182259]
  40. Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25900-25908 [PMID: 31772013]
  41. Nat Biotechnol. 2008 May;26(5):541-7 [PMID: 18464787]
  42. Virus Evol. 2023 Feb 02;9(1):vead011 [PMID: 36910859]
  43. Viruses. 2020 Sep 18;12(9): [PMID: 32962015]
  44. Gut Microbes. 2023 Jan-Dec;15(1):2192522 [PMID: 36998174]
  45. J Comput Biol. 2023 Apr;30(4):391-408 [PMID: 36607772]
  46. Virus Evol. 2022 Dec 26;9(1):veac124 [PMID: 36694816]
  47. BMC Bioinformatics. 2019 Dec 2;20(Suppl 16):594 [PMID: 31787095]
  48. Brief Bioinform. 2023 Nov 22;25(1): [PMID: 38048079]
  49. Microbiome. 2023 Jul 25;11(1):158 [PMID: 37491320]
  50. J Virol. 2020 May 18;94(11): [PMID: 32188733]
  51. ISME J. 2023 Feb;17(2):215-226 [PMID: 36319706]
  52. Mol Ecol. 2020 Jan;29(1):26-39 [PMID: 31561274]
  53. EBioMedicine. 2022 Jul;81:104113 [PMID: 35753153]
  54. Brief Bioinform. 2024 Jan 22;25(2): [PMID: 38343326]
  55. Viruses. 2023 Feb 04;15(2): [PMID: 36851645]
  56. Cell. 2019 May 16;177(5):1109-1123.e14 [PMID: 31031001]
  57. Nat Microbiol. 2020 May;5(5):668-674 [PMID: 32341570]
  58. Virology. 2023 Feb;579:75-83 [PMID: 36608597]
  59. Emerg Infect Dis. 2015 Jan;21(1):48-57 [PMID: 25532973]
  60. Nat Rev Genet. 2019 Jun;20(6):341-355 [PMID: 30918369]
  61. Microbiol Mol Biol Rev. 2020 Mar 4;84(2): [PMID: 32132243]
  62. J Mol Evol. 2021 Jul;89(6):329-340 [PMID: 34059925]
  63. Nat Biotechnol. 2021 Jun;39(6):727-736 [PMID: 33462508]
  64. Imeta. 2023 Aug;2(3): [PMID: 38152703]
  65. Microb Genom. 2024 Feb;10(2): [PMID: 38381034]
  66. Nat Biotechnol. 2023 Jul;41(7):898-902 [PMID: 37430074]
  67. PLoS Comput Biol. 2023 Aug 28;19(8):e1011422 [PMID: 37639475]
  68. Cell. 2018 Mar 8;172(6):1168-1172 [PMID: 29522738]
  69. Nature. 2016 Dec 22;540(7634):539-543 [PMID: 27880757]
  70. Nucleic Acids Res. 2023 Jan 6;51(D1):D733-D743 [PMID: 36399502]
  71. mBio. 2014 Jun 17;5(3):e01360-14 [PMID: 24939889]
  72. Nat Microbiol. 2022 Dec;7(12):2128-2150 [PMID: 36443458]

MeSH Term

Animals
Humans
Genome, Viral
Metagenome
Metagenomics
Virome
Viruses

Word Cloud

Created with Highcharts 10.0.0studiesreportingdatametagenomicvirome-scalesequencingnumberunderstandingvirusesanimalresultsviromepresentationcanlastdecadefacilitatedincreasingleadingexponentialexpansionvirusdiversitypartiallydrivendecreasingcostsimprovementscomputationaltoolsrevealingnovelincreasedkeyroleplayhumanhealthcentralconcernassociatedremarkableincreaselackbroadlyaccepted"goldstandards"generatedparticularimportancemultitudenuancedapproachesanalysisimpactresultingoutcomespublisheddifficultcontextualisemayreducedutilityduedeficienciesHereinaimaddressissuesoutliningrecommendationsencouragingtransparentcommunicationfindingsinterpretedevolutionaryecologicalcontextsImproving

Similar Articles

Cited By