FDFT1 maintains glioblastoma stem cells through activation of the Akt pathway.

Hui Mo, Jiajia Shao, Zhun Li, Peiting Zeng, Xinke Yin, Yongsheng Huang, Peng Wang, Jianwei Liao
Author Information
  1. Hui Mo: Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Guangzhou, 510120, China.
  2. Jiajia Shao: Department of Clinical Pharmacy, The Second People's Hospital of Foshan, Foshan, 528000, China.
  3. Zhun Li: Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Guangzhou, 510120, China.
  4. Peiting Zeng: Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
  5. Xinke Yin: Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Guangzhou, 510120, China.
  6. Yongsheng Huang: Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Guangzhou, 510120, China. huangysh65@mail.sysu.edu.cn.
  7. Peng Wang: Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Guangzhou, 510120, China. wangp49@mail.sysu.edu.cn.
  8. Jianwei Liao: Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Guangzhou, 510120, China. liaojw8@mail.sysu.edu.cn. ORCID

Abstract

BACKGROUND: Cancer stem cells (CSCs) have unique metabolic characteristics and are hypothesized to contribute significantly to the recurrence and drug resistance of glioblastoma multiforme (GBM). However, the reliance on mitochondrial metabolism and the underlying mechanism of glioblastoma stem cells (GSCs) remains to be elucidated.
METHODS: To quantify differential mitochondrial protein expression between GSCs and differentiated cells, a mass spectrum screen was applied by the Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) technique. Functional experiments including CCK8, neurosphere formation, flow cytometry, transwell, and wound healing assays were conducted to evaluate GBM cell malignant phenotype. The potential molecular mechanism of FDFT1 was screened by RNA-seq analyses. The candidate target genes were validated through RT-qPCR and western blot analyses.
RESULTS: As a top candidate, FDFT1 protein expression in GSCs was elevated relative to their differentiated counterparts. Functionally, the knockdown of FDFT1 suppressed the GBM cell proliferation and migration, while simultaneously enhancing sensitivity to temozolomide. Treatment with both the FDFT1 inhibitor (YM-53601) and simvastatin (an HMG-CoA reductase inhibitor) induced apoptosis in GSCs. Mechanistically, FDFT1 was transcriptionally regulated by SREBP2 but not SREBP1. Furthermore, FDFT1 activates the AKT pathway to regulate tumor metabolism and maintain the stemness of tumor cells.
CONCLUSIONS: GSCs exhibit a dependency on FDFT1-mediated mevalonate metabolism. Inhibition of FDFT1 could represent a potent strategy to eliminate GSCs.

Keywords

References

  1. iScience. 2023 Oct 11;26(11):108168 [PMID: 37915591]
  2. EClinicalMedicine. 2023 Aug 24;63:102182 [PMID: 37662517]
  3. Cell Death Dis. 2023 Aug 4;14(8):497 [PMID: 37542052]
  4. Cell. 2021 Apr 29;184(9):2454-2470.e26 [PMID: 33857425]
  5. Nat Commun. 2020 Apr 20;11(1):1869 [PMID: 32313017]
  6. Nature. 2006 Dec 7;444(7120):756-60 [PMID: 17051156]
  7. Oncogene. 2005 Sep 29;24(43):6465-81 [PMID: 16007182]
  8. Life Sci. 2023 Sep 15;329:121954 [PMID: 37473805]
  9. Cell Prolif. 2019 Jan;52(1):e12514 [PMID: 30341797]
  10. Cell Metab. 2021 Jan 5;33(1):199-210.e8 [PMID: 33152323]
  11. Commun Biol. 2023 Nov 1;6(1):1108 [PMID: 37914914]
  12. Cancer Res. 2022 Sep 2;82(17):3102-3115 [PMID: 35767704]
  13. Semin Cancer Biol. 2021 Aug;73:76-85 [PMID: 32805396]
  14. Br J Pharmacol. 2000 Sep;131(1):63-70 [PMID: 10960070]
  15. Front Oncol. 2020 Aug 21;10:1510 [PMID: 32974183]
  16. Oncogene. 2019 Jun;38(26):5250-5264 [PMID: 30894683]
  17. Theranostics. 2021 Jan 1;11(4):1991-2005 [PMID: 33408794]
  18. Neuro Oncol. 2023 Sep 5;25(9):1578-1591 [PMID: 36934350]
  19. Cell Metab. 2014 Mar 4;19(3):393-406 [PMID: 24606897]
  20. Oncogene. 2023 Nov;42(45):3289-3302 [PMID: 37773204]
  21. JAMA Oncol. 2020 Jul 1;6(7):1003-1010 [PMID: 32437507]
  22. Cell Death Dis. 2023 Dec 20;14(12):849 [PMID: 38123597]
  23. Mol Cell. 2022 Jan 20;82(2):435-446.e7 [PMID: 34847359]
  24. Cell Death Dis. 2018 Feb 15;9(3):265 [PMID: 29449559]
  25. Nat Metab. 2020 Feb;2(2):132-141 [PMID: 32694690]
  26. Regen Ther. 2023 May 03;23:94-101 [PMID: 37206538]
  27. Neuro Oncol. 2023 Jan 5;25(1):123-134 [PMID: 35419607]
  28. J Biol Chem. 2011 Sep 16;286(37):32843-53 [PMID: 21795717]
  29. Clin Transl Med. 2022 Jun;12(6):e848 [PMID: 35696608]
  30. Cell Death Differ. 2014 Jan;21(1):124-35 [PMID: 24096870]
  31. Redox Biol. 2019 Jun;24:101214 [PMID: 31108462]
  32. J Biol Chem. 2005 Mar 25;280(12):11731-9 [PMID: 15644330]
  33. Front Cell Dev Biol. 2021 Aug 04;9:659080 [PMID: 34422796]
  34. Biochem Pharmacol. 2023 Dec;218:115907 [PMID: 37931664]
  35. Arch Biochem Biophys. 2020 Oct 30;693:108569 [PMID: 32877662]
  36. Stem Cells. 2013 Jan;31(1):23-34 [PMID: 23132831]
  37. Prostate Cancer Prostatic Dis. 2012 Dec;15(4):339-45 [PMID: 22546838]
  38. Oncogenesis. 2020 Aug 29;9(8):78 [PMID: 32862200]
  39. Trends Immunol. 2022 Jan;43(1):78-92 [PMID: 34942082]
  40. Nat Rev Clin Oncol. 2023 Dec;20(12):864-884 [PMID: 37884736]
  41. Neurosurg Clin N Am. 2021 Apr;32(2):283-289 [PMID: 33781508]
  42. Stem Cell Res Ther. 2015 Oct 15;6:198 [PMID: 26472041]
  43. Int J Mol Sci. 2024 Jan 03;25(1): [PMID: 38203787]
  44. Lancet Neurol. 2024 Jul;23(7):740-748 [PMID: 38876751]
  45. J Proteome Res. 2010 May 7;9(5):2098-108 [PMID: 20199106]
  46. Redox Biol. 2023 May;61:102643 [PMID: 36857930]
  47. Nat Protoc. 2006;1(6):2856-60 [PMID: 17406544]
  48. Mol Cancer. 2011 Oct 11;10:128 [PMID: 21988793]
  49. Curr Gene Ther. 2022;22(2):152-161 [PMID: 34011256]
  50. Cell Death Differ. 2023 Jul;30(7):1710-1725 [PMID: 37202505]
  51. Life (Basel). 2021 May 18;11(5): [PMID: 34069945]
  52. Cell Stem Cell. 2021 Mar 4;28(3):394-408 [PMID: 33667360]

Grants

  1. 81903043/National Natural Science Foundation of China
  2. 82203435/National Natural Science Foundation of China
  3. 2018A030310086/Basic and Applied Basic Research Foundation of Guangdong Province
  4. 2021A1515111138/Basic and Applied Basic Research Foundation of Guangdong Province
  5. 2023A04J2103/Guangzhou Science and Technology Plan Project Support
  6. 20240394/Medical Research Project of Foshan

MeSH Term

Glioblastoma
Humans
Neoplastic Stem Cells
Proto-Oncogene Proteins c-akt
Cell Proliferation
Signal Transduction
Apoptosis
Cell Line, Tumor
Cell Movement
Temozolomide
Brain Neoplasms

Chemicals

Proto-Oncogene Proteins c-akt
Temozolomide

Word Cloud

Created with Highcharts 10.0.0FDFT1GSCscellsstemglioblastomaGBMmetabolismcellmitochondrialmechanismproteinexpressiondifferentiatedanalysescandidateinhibitorYM-53601pathwaytumorBACKGROUND:CancerCSCsuniquemetaboliccharacteristicshypothesizedcontributesignificantlyrecurrencedrugresistancemultiformeHoweverrelianceunderlyingremainselucidatedMETHODS:quantifydifferentialmassspectrumscreenappliedStableIsotopeLabelingAminoAcidsCellCultureSILACtechniqueFunctionalexperimentsincludingCCK8neurosphereformationflowcytometrytranswellwoundhealingassaysconductedevaluatemalignantphenotypepotentialmolecularscreenedRNA-seqtargetgenesvalidatedRT-qPCRwesternblotRESULTS:topelevatedrelativecounterpartsFunctionallyknockdownsuppressedproliferationmigrationsimultaneouslyenhancingsensitivitytemozolomideTreatmentsimvastatinHMG-CoAreductaseinducedapoptosisMechanisticallytranscriptionallyregulatedSREBP2SREBP1FurthermoreactivatesAKTregulatemaintainstemnessCONCLUSIONS:exhibitdependencyFDFT1-mediatedmevalonateInhibitionrepresentpotentstrategyeliminatemaintainsactivationAktGlioblastomacholesterol

Similar Articles

Cited By