A computational framework to optimize the mechanical behavior of synthetic vascular grafts.

David Jiang, Andrew J Robinson, Abbey Nkansah, Jonathan Leung, Leopold Guo, Steve A Maas, Jeffrey A Weiss, Elizabeth M Cosgriff-Hernandez, Lucas H Timmins
Author Information
  1. David Jiang: Department of Biomedical Engineering, The University of Utah, 36 S Wasatch Dr, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, College Station, TX, 77843, USA. Electronic address: david.jiang@utah.edu.
  2. Andrew J Robinson: Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX, 78712, USA. Electronic address: ajrobinson@utexas.edu.
  3. Abbey Nkansah: Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX, 78712, USA. Electronic address: abbey.nkansah@utexas.edu.
  4. Jonathan Leung: Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX, 78712, USA. Electronic address: jonathanleung@utexas.edu.
  5. Leopold Guo: Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX, 78712, USA. Electronic address: leopold.guo@utexas.edu.
  6. Steve A Maas: Scientific Computing and Imaging Institute, The University of Utah, 72 Central Campus Dr, Salt Lake City, UT, 84112, USA. Electronic address: steve.maas@utah.edu.
  7. Jeffrey A Weiss: Department of Biomedical Engineering, The University of Utah, 36 S Wasatch Dr, Salt Lake City, UT, 84112, USA; Scientific Computing and Imaging Institute, The University of Utah, 72 Central Campus Dr, Salt Lake City, UT, 84112, USA; Department of Orthopaedics, The University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA. Electronic address: jeff.weiss@utah.edu.
  8. Elizabeth M Cosgriff-Hernandez: Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX, 78712, USA. Electronic address: cosgriff.hernandez@utexas.edu.
  9. Lucas H Timmins: Department of Biomedical Engineering, The University of Utah, 36 S Wasatch Dr, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, College Station, TX, 77843, USA; Scientific Computing and Imaging Institute, The University of Utah, 72 Central Campus Dr, Salt Lake City, UT, 84112, USA; School of Engineering Medicine, Texas A&M University, 1020 Holcombe Blvd., Houston, TX, 77030, USA; Department of Multidisciplinary Engineering, Texas A&M University, 101 Bizzell St, College Station, TX, 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Academic Institute, 6565 Fannin Street, Houston, TX, 77030, USA. Electronic address: lucas.timmins@tamu.edu.

Abstract

The failure of synthetic small-diameter vascular grafts has been attributed to a mismatch in the compliance between the graft and native artery, driving mechanisms that promote thrombosis and neointimal hyperplasia. Additionally, the buckling of grafts results in large deformations that can lead to device failure. Although design features can be added to lessen the buckling potential (e.g., reinforcing coil), the addition is detrimental to decreasing compliance. Herein, we developed a novel finite element (FE) framework to inform vascular graft design by evaluating compliance and resistance to buckling. A batch-processing scheme iterated across the multi-dimensional design parameter space, which included three parameters: coil thickness, modulus, and spacing - generating 100 unique designs. FE models were created for each coil-reinforced graft design to simulate pressurization, axial buckling, and bent buckling, and results were analyzed to quantify compliance, buckling load, and kink radius, respectively. Validation of the FE models demonstrated that model predictions agreed with experimental observations for compliance (r = 0.99), buckling load (r = 0.89), and kink resistance (r = 0.97). Model predictions demonstrated a broad range of values for compliance (1.1-7.9 %/mmHg �� 10), buckling load (0.28-0.84 N), and kink radius (6-10 mm) across the design parameter space. Subsequently, data for each design parameter combination were optimized (i.e., minimized) to identify candidate graft designs with promising mechanical properties. Our model-directed framework successfully elucidated the complex mechanical determinants of graft performance, established structure-property relationships, and identified vascular graft designs with optimal mechanical properties, potentially improving clinical outcomes by addressing device failure.

Keywords

References

  1. J Mater Chem B. 2023 Jun 21;11(24):5416-5428 [PMID: 36825927]
  2. Comput Methods Biomech Biomed Engin. 2007 Jun;10(3):171-84 [PMID: 17558646]
  3. Arterioscler Thromb Vasc Biol. 2024 May;44(5):1065-1085 [PMID: 38572650]
  4. Biomech Model Mechanobiol. 2024 Jun;23(3):927-940 [PMID: 38361087]
  5. Annu Rev Biomed Eng. 2017 Jun 21;19:279-299 [PMID: 28633565]
  6. J Biomater Appl. 2001 Jan;15(3):241-78 [PMID: 11261602]
  7. Biomater Sci. 2020 Aug 21;8(16):4383-4395 [PMID: 32643723]
  8. Am J Pathol. 1985 Jan;118(1):43-54 [PMID: 3966536]
  9. J Vasc Surg. 1987 Feb;5(2):376-82 [PMID: 3102762]
  10. J Mech Behav Biomed Mater. 2021 Mar;115:104305 [PMID: 33454463]
  11. Vessel Plus. 2023;7: [PMID: 39639997]
  12. Ann Biomed Eng. 2013 Jul;41(7):1399-410 [PMID: 23192265]
  13. J Mater Chem B. 2020 May 21;8(19):4289-4298 [PMID: 32322860]
  14. Tissue Eng Part C Methods. 2019 Oct;25(10):561-570 [PMID: 31218941]
  15. J Appl Physiol (1985). 2006 Nov;101(5):1412-8 [PMID: 16825527]
  16. Biomed Eng Online. 2015;14 Suppl 1:S4 [PMID: 25603490]
  17. Med Biol Eng Comput. 2007 May;45(5):505-13 [PMID: 17375345]
  18. ACS Omega. 2022 Jun 21;7(26):22125-22148 [PMID: 35811906]
  19. J Biomech Eng. 2012 Jan;134(1):011005 [PMID: 22482660]
  20. ACS Biomater Sci Eng. 2022 Nov 14;8(11):4622-4624 [PMID: 35319177]
  21. J Mech Behav Biomed Mater. 2022 Jan;125:104877 [PMID: 34695661]
  22. J Pathol. 2000 Feb;190(3):292-9 [PMID: 10685063]
  23. Acta Biomater. 2021 Mar 15;123:298-311 [PMID: 33482362]
  24. Acta Biomater. 2019 Apr 15;89:84-94 [PMID: 30878448]
  25. Anal Biochem. 2014 Jun 1;454:36-7 [PMID: 24632099]
  26. J Biomater Appl. 2020 May;34(10):1355-1367 [PMID: 32148156]
  27. J Biomech Eng. 2018 Aug 1;140(8): [PMID: 30003262]

Grants

  1. U24 EB029007/NIBIB NIH HHS
  2. R24 GM136986/NIGMS NIH HHS
  3. R01 GM083925/NIGMS NIH HHS
  4. P41 GM103545/NIGMS NIH HHS
  5. R01 HL150608/NHLBI NIH HHS

MeSH Term

Finite Element Analysis
Blood Vessel Prosthesis
Mechanical Phenomena
Materials Testing
Stress, Mechanical
Prosthesis Design
Biomechanical Phenomena

Word Cloud

Created with Highcharts 10.0.0bucklinggraftcompliancedesignvascularmechanicalfailuregraftsFEframeworkparameterdesignsloadkinkr = 0syntheticresultscandeviceecoilelementresistanceacrossspacemodelsradiusdemonstratedpredictionspropertiessmall-diameterattributedmismatchnativearterydrivingmechanismspromotethrombosisneointimalhyperplasiaAdditionallylargedeformationsleadAlthoughfeaturesaddedlessenpotentialgreinforcingadditiondetrimentaldecreasingHereindevelopednovelfiniteinformevaluatingbatch-processingschemeiteratedmulti-dimensionalincludedthreeparameters:thicknessmodulusspacing-generating100uniquecreatedcoil-reinforcedsimulatepressurizationaxialbentanalyzedquantifyrespectivelyValidationmodelagreedexperimentalobservations998997Modelbroadrangevalues11-79%/mmHg �� 10028-084 N6-10 mmSubsequentlydatacombinationoptimizediminimizedidentifycandidatepromisingmodel-directedsuccessfullyelucidatedcomplexdeterminantsperformanceestablishedstructure-propertyrelationshipsidentifiedoptimalpotentiallyimprovingclinicaloutcomesaddressingcomputationaloptimizebehaviorBiomaterialsBucklingCompliancematchingFiniteanalysisKinkingVascular

Similar Articles

Cited By