Synergistic efficacy of phage Henu10 with antibiotics against with insight into phage resistance and fitness trade-offs.

Jing Zhao, Baohong Chen, Weizhen Wang, Yu Kang, Erli Hu, Yuan Zhang, Huiling Chen, Xiao Xu, Xinying Ji, Yuhan Wang, Tieshan Teng, Salwa E Gomaa
Author Information
  1. Jing Zhao: Gynaecology Department, Hua County People's Hospital, Anyang, China.
  2. Baohong Chen: Gynaecology Department, Hua County People's Hospital, Anyang, China.
  3. Weizhen Wang: Gynaecology Department, Hua County People's Hospital, Anyang, China.
  4. Yu Kang: Gynaecology Department, Hua County People's Hospital, Anyang, China.
  5. Erli Hu: Gynaecology Department, Hua County People's Hospital, Anyang, China.
  6. Yuan Zhang: Gynaecology Department, Hua County People's Hospital, Anyang, China.
  7. Huiling Chen: Gynaecology Department, Hua County People's Hospital, Anyang, China.
  8. Xiao Xu: Gynaecology Department, Hua County People's Hospital, Anyang, China.
  9. Xinying Ji: Gynaecology Department, Hua County People's Hospital, Anyang, China.
  10. Yuhan Wang: Gynaecology Department, Hua County People's Hospital, Anyang, China.
  11. Tieshan Teng: Gynaecology Department, Hua County People's Hospital, Anyang, China.
  12. Salwa E Gomaa: Gynaecology Department, Hua County People's Hospital, Anyang, China.

Abstract

Introduction: The irrational use of antibiotics has facilitated the emergence of multidrug- resistant ., undermining the effectiveness of the currently available antibiotics. Consequently, there is an urgent need to explore new approaches, with phage therapy emerging as a promising alternative.
Methods: In this study, we isolated a phage targeting Shigella dysenteriae from sewage samples using DLA methold, designated Henu10. The morphology, biological characteristics, genomic composition, and phylogenetic relationships of Henu10 were thoroughly characterized. To investigate the trade-off relationship between phage resistance and bacterial fitness, phage Henu10-resistant strains R6 and R11 were identified using continuous passage and bidirectional validation methods.
Results: Phage-resistant strains R6 and R11 exhibited impaired adsorption, increased sensitivity to temperature and pH stress, heightened susceptibility to certain antibiotics (such as ciprofloxacin and kanamycin), reduced biofilm-forming capacity, and diminished colonization ability in vivo compared to the wild-type strain.
Discussion: These results indicate that phage Henu10 may effectively control the pathogenic bacteria associated with , representing a promising new therapeutic option for treating infections.

Keywords

References

  1. J Biomed Sci. 2022 Mar 30;29(1):23 [PMID: 35354477]
  2. Expert Rev Anti Infect Ther. 2015 Jan;13(1):69-80 [PMID: 25399653]
  3. Science. 2013 Nov 29;342(6162):1237435 [PMID: 24288338]
  4. Int J Mol Sci. 2023 Oct 26;24(21): [PMID: 37958612]
  5. Indian Pediatr. 2013 Mar;50(3):340-1 [PMID: 23680611]
  6. Virus Genes. 2021 Apr;57(2):205-216 [PMID: 33471272]
  7. Int J Biol Sci. 2021 Aug 18;17(13):3573-3582 [PMID: 34512166]
  8. Antibiotics (Basel). 2021 Feb 09;10(2): [PMID: 33572473]
  9. Nature. 2019 Oct;574(7779):549-552 [PMID: 31645729]
  10. Infect Immun. 2020 Jun 22;88(7): [PMID: 32094257]
  11. J Basic Microbiol. 2015 Apr;55(4):420-31 [PMID: 25557472]
  12. Viruses. 2018 Jun 30;10(7): [PMID: 29966329]
  13. Virus Genes. 2017 Jun;53(3):464-476 [PMID: 28299517]
  14. Arch Virol. 2017 Dec;162(12):3843-3847 [PMID: 28812171]
  15. Curr Issues Mol Biol. 2023 Aug 03;45(8):6432-6448 [PMID: 37623225]
  16. Nat Microbiol. 2021 Feb;6(2):157-161 [PMID: 33432151]
  17. Microorganisms. 2021 Mar 03;9(3): [PMID: 33802385]
  18. J Antimicrob Chemother. 2020 Mar 1;75(3):576-585 [PMID: 31793990]
  19. Pharmaceutics. 2022 Sep 13;14(9): [PMID: 36145682]
  20. FEMS Microbiol Lett. 2006 May;258(2):182-6 [PMID: 16640570]
  21. Wkly Epidemiol Rec. 1997 Mar 14;72(11):73-9 [PMID: 9115858]
  22. J Microbiol. 2005 Apr;43(2):133-43 [PMID: 15880088]
  23. Int J Mol Sci. 2023 Oct 26;24(21): [PMID: 37958578]
  24. Curr Microbiol. 2018 May;75(5):574-579 [PMID: 29307051]
  25. Annu Rev Virol. 2023 Sep 29;10(1):503-524 [PMID: 37268007]
  26. Diagn Microbiol Infect Dis. 2014 Mar;78(3):287-91 [PMID: 24418369]
  27. J Antimicrob Chemother. 1997 Aug;40(2):235-40 [PMID: 9301989]
  28. Vaccine. 2023 Nov 3;41 Suppl 2:S76-S94 [PMID: 37827969]
  29. Adv Virus Res. 2012;83:3-40 [PMID: 22748807]
  30. Ann Trop Med Parasitol. 1996 Apr;90(2):105-14 [PMID: 8762400]
  31. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  32. FEMS Immunol Med Microbiol. 2012 Jul;65(2):395-8 [PMID: 22524448]

MeSH Term

Shigella dysenteriae
Anti-Bacterial Agents
Phage Therapy
Bacteriophages
Animals
Phylogeny
Sewage
Dysentery, Bacillary
Ciprofloxacin
Biofilms
Mice
Kanamycin
Microbial Sensitivity Tests

Chemicals

Anti-Bacterial Agents
Sewage
Ciprofloxacin
Kanamycin

Word Cloud

Created with Highcharts 10.0.0phageantibioticsHenu10resistancefitnessnewtherapypromisingShigelladysenteriaeusingstrainsR6R11Introduction:irrationalusefacilitatedemergencemultidrug-resistantunderminingeffectivenesscurrentlyavailableConsequentlyurgentneedexploreapproachesemergingalternativeMethods:studyisolatedtargetingsewagesamplesDLAmetholddesignatedmorphologybiologicalcharacteristicsgenomiccompositionphylogeneticrelationshipsthoroughlycharacterizedinvestigatetrade-offrelationshipbacterialHenu10-resistantidentifiedcontinuouspassagebidirectionalvalidationmethodsResults:Phage-resistantexhibitedimpairedadsorptionincreasedsensitivitytemperaturepHstressheightenedsusceptibilitycertainciprofloxacinkanamycinreducedbiofilm-formingcapacitydiminishedcolonizationabilityvivocomparedwild-typestrainDiscussion:resultsindicatemayeffectivelycontrolpathogenicbacteriaassociatedrepresentingtherapeuticoptiontreatinginfectionsSynergisticefficacyinsighttrade-offsantibioticcostphage-antibioticssynergyphage-resistanceshigellosis

Similar Articles

Cited By

No available data.