To label or not: the need for validation in label-free imaging.

Joseph M Szulczewski, Filiz Yesilkoy, Tyler K Ulland, Randy Bartels, Bryan A Millis, Stephen A Boppart, Kevin W Eliceiri
Author Information
  1. Joseph M Szulczewski: University of North Carolina-Chapel Hill, Department of Pharmacology, Chapel Hill, North Carolina, United States.
  2. Filiz Yesilkoy: University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States. ORCID
  3. Tyler K Ulland: University of Wisconsin-Madison, Department of Pathology and Laboratory Medicine, Madison, Wisconsin, United States. ORCID
  4. Randy Bartels: University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States. ORCID
  5. Bryan A Millis: Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States.
  6. Stephen A Boppart: University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States. ORCID
  7. Kevin W Eliceiri: University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States. ORCID

Abstract

Significance: Advances in label-free imaging have impacted many areas of biological and biomedical imaging ranging from cell biology and cancer to pathology and neuroscience. Despite the great progress and advantages of these methods, it is clear that to realize their full potential, validation by extrinsic labels and probes is critically needed.
Aim: This perspective calls for developing and applying innovative labels and probes to validate both existing and emerging label-free imaging methods.
Approach: Major representative types of label-free imaging methods are briefly presented discussing their advantages and differing contrasts. Their biological applications are also reviewed with a focus on how validation of label-free methods with carefully developed labeling approaches will greatly aid in further intrinsic contrast imaging adoption and likely lead to more sophisticated image-based biomarkers and a better understanding of the underlying signals.
Conclusions: Expanded efforts in extrinsic label validation will significantly push forward the utilization and adoption of label-free methods both in basic research and clinical models.

Keywords

References

  1. J Neuroinflammation. 2022 Sep 4;19(1):215 [PMID: 36058959]
  2. J Biomed Opt. 2024 Sep;29(9):093511 [PMID: 39364328]
  3. Biomed Opt Express. 2015 Jan 15;6(2):559-73 [PMID: 25780745]
  4. J Biol Chem. 1979 Jun 10;254(11):4764-71 [PMID: 220260]
  5. Elife. 2023 Mar 30;12: [PMID: 36994985]
  6. Sci Rep. 2013 Dec 05;3:3432 [PMID: 24305550]
  7. Nat Commun. 2021 Oct 19;12(1):6091 [PMID: 34667203]
  8. Quant Imaging Med Surg. 2020 Nov;10(11):2177-2190 [PMID: 33139997]
  9. J Biomed Opt. 2024 Jun;29(Suppl 2):S22705 [PMID: 38584967]
  10. Sci Rep. 2020 Jul 6;10(1):11055 [PMID: 32632110]
  11. Commun Biol. 2022 Aug 8;5(1):794 [PMID: 35941353]
  12. Nat Chem Biol. 2020 Oct;16(10):1087-1095 [PMID: 32572275]
  13. Cancer Res. 2014 Sep 15;74(18):5184-94 [PMID: 25100563]
  14. Nat Biotechnol. 2003 Nov;21(11):1356-60 [PMID: 14595363]
  15. Nat Photonics. 2023 Oct;17(10):846-855 [PMID: 38162388]
  16. Adv Biol (Weinh). 2021 Jan;5(1):e2000184 [PMID: 33724734]
  17. Neoplasia. 2015 Dec;17(12):862-870 [PMID: 26696368]
  18. Nat Commun. 2023 Jun 6;14(1):3277 [PMID: 37280202]
  19. Sci Adv. 2016 Sep 28;2(9):e1600521 [PMID: 27704043]
  20. Cancer Res. 2005 Oct 1;65(19):8766-73 [PMID: 16204046]
  21. Chem Biomed Imaging. 2024 Jul 08;2(8):584-591 [PMID: 39211790]
  22. Annu Rev Biomed Eng. 2015;17:415-45 [PMID: 26514285]
  23. J Microsc. 2014 Jun;254(3):115-21 [PMID: 24749905]
  24. Sci Rep. 2021 Apr 13;11(1):8067 [PMID: 33850171]
  25. J Biophotonics. 2018 Nov;11(11):e201800008 [PMID: 29931742]
  26. J Phys Chem B. 2022 Nov 3;126(43):8597-8613 [PMID: 36285985]
  27. Nat Chem Biol. 2020 Aug;16(8):826-833 [PMID: 32424303]
  28. Light Sci Appl. 2023 Jul 19;12(1):174 [PMID: 37463888]
  29. J Phys Chem B. 2018 Oct 4;122(39):9218-9224 [PMID: 30208710]
  30. Chem Rev. 2017 Apr 12;117(7):5110-5145 [PMID: 28358482]
  31. Adv Mater. 2023 Jul;35(28):e2301208 [PMID: 37186328]
  32. Sci Rep. 2016 May 25;6:25086 [PMID: 27220760]
  33. Methods Mol Biol. 2010;594:155-62 [PMID: 20072916]
  34. Elife. 2022 Feb 24;11: [PMID: 35200139]
  35. Anal Bioanal Chem. 2010 Mar;396(5):1619-22 [PMID: 20127319]
  36. Eur J Histochem. 2015 Feb 06;59(1):2485 [PMID: 25820564]
  37. Am J Pathol. 2011 Mar;178(3):1221-32 [PMID: 21356373]
  38. Neurophotonics. 2020 Jul;7(3):035003 [PMID: 32821772]
  39. Free Radic Biol Med. 2016 Nov;100:53-65 [PMID: 27519271]
  40. J Anat. 2020 Jan;236(1):171-179 [PMID: 31468540]
  41. Biomark Res. 2021 Dec 4;9(1):87 [PMID: 34863296]
  42. J Biomed Opt. 2022 Apr;27(4): [PMID: 35484694]
  43. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1271-5 [PMID: 1741380]
  44. Sci Adv. 2023 Oct 27;9(43):eadi2181 [PMID: 37889965]
  45. Optica. 2020 May;7(5):417-424 [PMID: 34926725]
  46. Opt Lett. 2017 Jan 15;42(2):294-297 [PMID: 28081096]
  47. Biomed Opt Express. 2016 Jun 01;7(7):2441-52 [PMID: 27446681]
  48. Opt Lett. 2022 Nov 15;47(22):5841-5844 [PMID: 37219129]
  49. Chem Rev. 2017 Apr 12;117(7):5070-5094 [PMID: 27966347]
  50. Annu Rev Anal Chem (Palo Alto Calif). 2021 Jun 5;14(1):323-345 [PMID: 33826853]
  51. Free Radic Biol Med. 2016 Nov;100:43-52 [PMID: 27261194]
  52. Biomed Opt Express. 2019 Oct 01;10(10):5431-5444 [PMID: 31646056]
  53. ACS Nano. 2022 Aug 23;16(8):11516-11544 [PMID: 35916417]
  54. Opt Lett. 2019 Apr 15;44(8):1936-1939 [PMID: 30985779]
  55. Anal Biochem. 1992 May 1;202(2):316-30 [PMID: 1519759]

MeSH Term

Animals
Humans
Diagnostic Imaging
Image Processing, Computer-Assisted
Reproducibility of Results
Staining and Labeling

Word Cloud

Created with Highcharts 10.0.0label-freeimagingmethodsvalidationprobesbiologicaladvantagesextrinsiclabelswillintrinsiccontrastadoptionlabelSignificance:AdvancesimpactedmanyareasbiomedicalrangingcellbiologycancerpathologyneuroscienceDespitegreatprogressclearrealizefullpotentialcriticallyneededAim:perspectivecallsdevelopingapplyinginnovativevalidateexistingemergingApproach:Majorrepresentativetypesbrieflypresenteddiscussingdifferingcontrastsapplicationsalsoreviewedfocuscarefullydevelopedlabelingapproachesgreatlyaidlikelyleadsophisticatedimage-basedbiomarkersbetterunderstandingunderlyingsignalsConclusions:Expandedeffortssignificantlypushforwardutilizationbasicresearchclinicalmodelsnot:needautofluorescence

Similar Articles

Cited By