STGAT-CS: spatio-temporal-graph attention network based channel selection for MI-based BCI.

Ming Meng, Bin Xu, Yuliang Ma, Yunyuan Gao, Zhizeng Luo
Author Information
  1. Ming Meng: School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China. ORCID
  2. Bin Xu: School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China.
  3. Yuliang Ma: School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China.
  4. Yunyuan Gao: School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China.
  5. Zhizeng Luo: School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China.

Abstract

Brain-computer interface (BCI) based on the motor imagery paradigm typically utilizes multi-channel electroencephalogram (EEG) to ensure accurate capture of physiological phenomena. However, excessive channels often contain redundant information and noise, which can significantly degrade BCI performance. Although there have been numerous studies on EEG channel selection, most of them require manual feature extraction, and the extracted features are difficult to fully represent the effective information of EEG signals. In this paper, we propose a spatio-temporal-graph attention network for channel selection (STGAT-CS) of EEG signals. We consider the EEG channels and their inter-channel connectivity as a graph and treat the channel selection problem as a node classification problem on the graph. We leverage the multi-head attention mechanism of graph attention network to dynamically capture topological relationships between nodes and update node features accordingly. Additionally, we introduce one-dimensional convolution to automatically extract temporal features from each channel in the original EEG signal, thereby obtaining more comprehensive spatiotemporal characteristics. In the classification tasks of the BCI Competition III Dataset IVa and BCI Competition IV Dataset I, STGAT-CS achieved average accuracies of 91.5% and 85.4% respectively, demonstrating the effectiveness of the proposed method.

Keywords

References

  1. Psychophysiology. 2020 Jul;57(7):e13569 [PMID: 32301143]
  2. J Neural Eng. 2005 Dec;2(4):L14-22 [PMID: 16317224]
  3. Comput Methods Programs Biomed. 2023 Apr;231:107380 [PMID: 36745954]
  4. Front Neurosci. 2012 Feb 06;6:7 [PMID: 22347153]
  5. Cogn Neurodyn. 2021 Oct;15(5):873-886 [PMID: 34603548]
  6. J Neurosci Methods. 2015 Jun 15;248:59-69 [PMID: 25840362]
  7. Cogn Neurodyn. 2023 Oct;17(5):1283-1296 [PMID: 37786654]
  8. IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):153-9 [PMID: 16792282]
  9. IEEE Trans Biomed Eng. 2008 Oct;55(10):2452-62 [PMID: 18838371]
  10. Cogn Neurodyn. 2021 Feb;15(1):141-156 [PMID: 33786085]
  11. Cogn Neurodyn. 2016 Jun;10(3):201-9 [PMID: 27275376]
  12. IEEE Trans Neural Syst Rehabil Eng. 2023 Feb 03;PP: [PMID: 37022411]
  13. IEEE Trans Biomed Eng. 2011 Jun;58(6):1865-73 [PMID: 21427014]
  14. Comput Intell Neurosci. 2019 May 13;2019:8068357 [PMID: 31214255]
  15. IEEE Trans Neural Syst Rehabil Eng. 2016 Jan;24(1):169-79 [PMID: 26302519]
  16. Neural Comput. 2016 Jun;28(6):999-1041 [PMID: 27137671]
  17. Cogn Neurodyn. 2022 Aug;16(4):791-803 [PMID: 35847541]
  18. Clin Neurophysiol. 1999 Nov;110(11):1842-57 [PMID: 10576479]
  19. IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):131-3 [PMID: 12899254]
  20. Cogn Neurodyn. 2022 Feb;16(1):17-41 [PMID: 35126769]
  21. Front Neurosci. 2022 Oct 21;16:1045851 [PMID: 36340754]
  22. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:30-35 [PMID: 36086201]
  23. Cogn Neurodyn. 2020 Apr;14(2):253-265 [PMID: 32226566]
  24. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6344-7 [PMID: 22255789]
  25. J Neurosci Methods. 2004 Mar 15;134(1):9-21 [PMID: 15102499]

Word Cloud

Created with Highcharts 10.0.0BCIEEGchannelselectionattentionnetworkfeaturesgraphBrain-computerinterfacebasedimagerycapturechannelsinformationsignalsspatio-temporal-graphSTGAT-CSproblemnodeclassificationconvolutionCompetitionDatasetmotorparadigmtypicallyutilizesmulti-channelelectroencephalogramensureaccuratephysiologicalphenomenaHoweverexcessiveoftencontainredundantnoisecansignificantlydegradeperformanceAlthoughnumerousstudiesrequiremanualfeatureextractionextracteddifficultfullyrepresenteffectivepaperproposeconsiderinter-channelconnectivitytreatleveragemulti-headmechanismdynamicallytopologicalrelationshipsnodesupdateaccordinglyAdditionallyintroduceone-dimensionalautomaticallyextracttemporaloriginalsignaltherebyobtainingcomprehensivespatiotemporalcharacteristicstasksIIIIVaIVachievedaverageaccuracies915%854%respectivelydemonstratingeffectivenessproposedmethodSTGAT-CS:MI-basedChannelGraphGATMotorMIOne-dimensional1DConv

Similar Articles

Cited By