Physicochemical and techno-functional characterization of soluble proteins extracted by ultrasound from the cricket .

Salvador O Cruz-L��pez, H��ctor B Escalona-Buend��a, Isadora Martinez-Arellano, Julieta Dom��nguez-Soberanes, Yenizey M Alvarez-Cisneros
Author Information
  1. Salvador O Cruz-L��pez: Departamento de Biotecnolog��a, Universidad Aut��noma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma, 1a. Secci��n, C.P. 09310, Ciudad de M��xico, Mexico.
  2. H��ctor B Escalona-Buend��a: Departamento de Biotecnolog��a, Universidad Aut��noma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma, 1a. Secci��n, C.P. 09310, Ciudad de M��xico, Mexico.
  3. Isadora Martinez-Arellano: Instituto de Ciencias Aplicadas y Tecnolog��a, Universidad Nacional Aut��noma de M��xico, Circuito Exterior S/N, Ciudad Universitaria, 04510, Ciudad de M��xico, Mexico.
  4. Julieta Dom��nguez-Soberanes: Universidad Panamericana, Facultad de Ingenier��a, Jose Mar��a Escriv�� de Balaguer 101, Villas Bonaterra, Aguascalientes, 20296, M��xico.
  5. Yenizey M Alvarez-Cisneros: Departamento de Biotecnolog��a, Universidad Aut��noma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma, 1a. Secci��n, C.P. 09310, Ciudad de M��xico, Mexico.

Abstract

The growing interest in using insects for human consumption is due to their numerous benefits. Insects offer efficient protein generation, rapid growth rates, and high nutritional value. The objective of this work was to evaluate the physicochemical and techno-functional properties of the different soluble protein fractions of the cricket using various methods: grinding (CF), defatting (DCF), alkalinization (SPA), and ultrasound-assisted extraction (SPS). CF, DCF, SPA, and SPS were used as extenders in food models and compared with a control group prepared with meat and a commercial soy protein (SPI). Defatting increased the protein content (52 %) in CF, improving digestibility, while the SPS extraction method improved solid recovery (40.46 %), protein recovery (41.94 %), total protein content (53.85 %), and digestibility (53.7 %) compared to SPA. Proteins exhibited pH-dependent solubility, with higher solubility at pH 12-13 and an isoelectric point of 4.5. In techno-functional properties, SPS had the highest water/oil retention capacity (2.8 g/g, 3.49 g/g), foam formation (386.66 %), and emulsifying stability (32.96 m/g). CF showed no foam formation, although defatting (DCF) improved foam formation (8.33 %) and emulsifying stability (6.23 m/g). Heat coagulation was higher for CF and DCF (30.58 % and 30.33 % respectively). All meat models with SPA and SPS showed high elasticity and cohesiveness but low hardness, gumminess, and chewiness. The model prepared with 15 % SPS reduced cooking losses (0.91 %) and total expressible fluid separation (1 %), improved water retention capacity (83.02 %), and increased total soluble protein content (5.32 mg/mL). The ultrasound-assisted extraction method proved to be an efficient way to obtain soluble proteins from with techno-functional properties suitable for use as a food additive or meat extender.

Keywords

References

  1. Food Chem X. 2024 Jun 10;23:101540 [PMID: 39007110]
  2. Ultrason Sonochem. 2021 Aug;76:105653 [PMID: 34198127]
  3. Foods. 2022 Feb 27;11(5): [PMID: 35267337]
  4. Korean J Food Sci Anim Resour. 2016;36(4):445-51 [PMID: 27621683]
  5. Heliyon. 2016 Dec 22;2(12):e00218 [PMID: 28054035]
  6. Animals (Basel). 2020 Mar 25;10(4): [PMID: 32218193]
  7. Sci Rep. 2021 Aug 27;11(1):17320 [PMID: 34453091]
  8. Ultrason Sonochem. 2022 Mar;84:105955 [PMID: 35220179]
  9. Food Chem. 2017 Jun 1;224:414-422 [PMID: 28159288]
  10. Ultrason Sonochem. 2023 Mar;94:106335 [PMID: 36821935]
  11. Int J Biol Macromol. 2023 Jul 1;242(Pt 3):124908 [PMID: 37217045]
  12. J Agric Food Chem. 2021 Feb 3;69(4):1308-1317 [PMID: 33494593]
  13. J Anim Sci Technol. 2020 Jan;62(1):103-110 [PMID: 32082604]
  14. Annu Rev Entomol. 2013;58:563-83 [PMID: 23020616]
  15. Meat Sci. 2013 Mar;93(3):652-8 [PMID: 23273477]
  16. Food Res Int. 2017 Feb;92:88-94 [PMID: 28290301]
  17. Food Res Int. 2016 Nov;89(Pt 1):739-748 [PMID: 28460973]
  18. J Food Sci Technol. 2020 Jun;57(6):2070-2078 [PMID: 32431333]
  19. Foods. 2021 Apr 15;10(4): [PMID: 33920844]
  20. Anim Biosci. 2021 Oct;34(10):1674-1683 [PMID: 33332948]
  21. Crit Rev Food Sci Nutr. 2022;62(17):4800-4820 [PMID: 33527840]
  22. Korean J Food Sci Anim Resour. 2017;37(6):955-961 [PMID: 29725219]
  23. Heliyon. 2024 May 31;10(11):e32225 [PMID: 38868042]
  24. Food Res Int. 2016 Nov;89(Pt 1):129-151 [PMID: 28460898]
  25. Insects. 2022 Jun 14;13(6): [PMID: 35735883]
  26. Ultrason Sonochem. 2021 Dec;80:105823 [PMID: 34749046]
  27. Food Sci Anim Resour. 2022 May;42(3):536-555 [PMID: 35611083]
  28. Ultrason Sonochem. 2023 Jul;97:106464 [PMID: 37271028]
  29. J Agric Food Chem. 2021 Mar 17;69(10):3189-3198 [PMID: 33496584]
  30. Foods. 2022 Mar 28;11(7): [PMID: 35407063]
  31. Int J Biol Macromol. 2023 Jan 31;226:1332-1340 [PMID: 36442573]
  32. Molecules. 2021 Aug 31;26(17): [PMID: 34500739]
  33. Int J Biol Macromol. 2017 Sep;102:970-976 [PMID: 28465176]
  34. Front Nutr. 2021 Jan 12;7:537915 [PMID: 33511150]
  35. Food Biophys. 2016;11:184-197 [PMID: 27212897]
  36. Food Chem. 2019 Aug 15;289:130-138 [PMID: 30955594]
  37. Foods. 2022 Feb 28;11(5): [PMID: 35267357]
  38. J Food Sci. 2017 Dec;82(12):2787-2793 [PMID: 29095501]
  39. Korean J Food Sci Anim Resour. 2017;37(5):617-625 [PMID: 29147084]
  40. Food Res Int. 2019 Feb;116:697-706 [PMID: 30716997]
  41. Nutrients. 2017 Sep 02;9(9): [PMID: 28869499]
  42. Foods. 2020 Oct 28;9(11): [PMID: 33126518]
  43. Food Sci Anim Resour. 2021 Mar;41(2):185-195 [PMID: 33987542]
  44. Food Res Int. 2019 Dec;126:108672 [PMID: 31732082]
  45. Food Res Int. 2016 Oct;88(Pt A):24-31 [PMID: 28847399]
  46. Proteomics. 2015 Nov;15(21):3688-98 [PMID: 26227428]
  47. Korean J Food Sci Anim Resour. 2017;37(3):351-359 [PMID: 28747820]
  48. Food Chem. 2020 May 1;311:126022 [PMID: 31869637]
  49. J Food Sci Technol. 2019 Jul;56(7):3355-3363 [PMID: 31274903]
  50. Food Res Int. 2022 Jul;157:111268 [PMID: 35761580]
  51. Foods. 2022 Oct 25;11(21): [PMID: 36359967]
  52. J Agric Food Chem. 2017 Mar 22;65(11):2275-2278 [PMID: 28252948]
  53. Nutrients. 2022 Feb 23;14(5): [PMID: 35267922]
  54. Food Res Int. 2020 May;131:109045 [PMID: 32247471]
  55. Foods. 2022 Sep 20;11(19): [PMID: 36230006]
  56. Food Funct. 2021 Jul 21;12(14):6309-6322 [PMID: 34085683]
  57. J Sci Food Agric. 2021 Jan 30;101(2):648-658 [PMID: 32691872]
  58. Cureus. 2022 Jul 14;14(7):e26863 [PMID: 35974846]
  59. J Sci Food Agric. 2019 Mar 15;99(4):1568-1576 [PMID: 30144065]
  60. Food Chem. 2018 Apr 25;246:18-25 [PMID: 29291838]
  61. Foods. 2021 Feb 07;10(2): [PMID: 33562383]
  62. Molecules. 2022 Aug 22;27(16): [PMID: 36014591]
  63. J Chem Ecol. 2022 Feb;48(2):121-140 [PMID: 35001201]
  64. Front Nutr. 2022 Nov 10;9:1028543 [PMID: 36438774]

Word Cloud

Created with Highcharts 10.0.0%proteinSPSCFtechno-functionalpropertiessolubleDCFSPAextractionmeatcontentimprovedtotalfoamformationusingefficienthighcricketdefattingultrasound-assistedfoodmodelscomparedpreparedincreaseddigestibilitymethodrecovery53solubilityhigher5retentioncapacityemulsifyingstabilityshowed3330proteinsgrowinginterestinsectshumanconsumptionduenumerousbenefitsInsectsoffergenerationrapidgrowthratesnutritionalvalueobjectiveworkevaluatephysicochemicaldifferentfractionsvariousmethods:grindingalkalinizationusedextenderscontrolgroupcommercialsoySPIDefatting52improvingsolid40464194857ProteinsexhibitedpH-dependentpH12-13isoelectricpoint4highestwater/oil28 g/g349 g/g38666 %3296 m/galthough8623 m/gHeatcoagulation58respectivelyelasticitycohesivenesslowhardnessgumminesschewinessmodel15 %reducedcookinglosses091expressiblefluidseparation1water830232 mg/mLprovedwayobtainsuitableuseadditiveextenderPhysicochemicalcharacterizationextractedultrasoundAchetadomesticusSolubleSonicationTechno-functional

Similar Articles

Cited By

No available data.