Artificial intelligence and machine learning techniques for suicide prediction: Integrating dietary patterns and environmental contaminants.

Mayyas Al-Remawi, Ahmed S A Ali Agha, Faisal Al-Akayleh, Faisal Aburub, Rami A Abdel-Rahem
Author Information
  1. Mayyas Al-Remawi: Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
  2. Ahmed S A Ali Agha: School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan.
  3. Faisal Al-Akayleh: Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
  4. Faisal Aburub: Faculty of Administrative & Financial Sciences University of Petra Amman, Jordan.
  5. Rami A Abdel-Rahem: Faculty of Arts and Sciences, Department of Chemistry. University of Petra, Amman, Jordan.

Abstract

Background: Suicide remains a leading cause of death globally, with nearly 800,000 deaths annually, particularly among young adults in regions like Europe, Australia, and the Middle East, highlighting the urgent need for innovative intervention strategies beyond conventional methods.
Objectives: This review aims to explore the transformative role of artificial intelligence (AI) and machine learning (ML) in enhancing suicide risk prediction and developing effective prevention strategies, examining how these technologies integrate complex risk factors, including psychiatric, socio-economic, dietary, and environmental influences.
Methods: A comprehensive review of literature from databases such as PubMed and Web of Science was conducted, focusing on studies that utilize AI and ML technologies. The review assessed the efficacy of various models, including Random Forest, neural networks, and others, in analyzing data from electronic health records, social media, and digital behaviors. Additionally, it evaluated a broad spectrum of dietary factors and their influence on suicidal behaviors, as well as the impact of environmental contaminants like lithium, arsenic, fluoride, mercury, and organophosphorus pesticides.
Conclusions: AI and ML are revolutionizing suicide prevention strategies, with models achieving nearly 90 % predictive accuracy by integrating diverse data sources. Our findings highlight the need for geographically and demographically tailored public health interventions and comprehensive AI models that address the multifactorial nature of suicide risk. However, the deployment of these technologies must address critical ethical and privacy concerns, ensuring compliance with regulations and the development of transparent, ethically guided AI systems. AI-driven tools, such as virtual therapists and chatbots, are essential for immediate support, particularly in underserved regions.

Keywords

References

  1. Psychother Res. 2021 Mar;31(3):302-312 [PMID: 32558625]
  2. BMC Psychiatry. 2017 Apr 4;17(1):122 [PMID: 28372553]
  3. Am J Psychiatry. 2021 Dec;178(12):1107-1118 [PMID: 34645276]
  4. Int J Environ Res Public Health. 2018 Jul 06;15(7): [PMID: 29986446]
  5. J Gen Intern Med. 2020 Mar 26;: [PMID: 32219647]
  6. Front Psychiatry. 2020 Apr 15;11:268 [PMID: 32351413]
  7. J Trace Elem Med Biol. 2017 Sep;43:197-201 [PMID: 28385387]
  8. Death Stud. 2022;46(2):467-472 [PMID: 32180536]
  9. Crisis. 2015;36(1):1-3 [PMID: 25653086]
  10. Eur Psychiatry. 2022 Feb 15;:1-22 [PMID: 35166203]
  11. J Affect Disord. 2021 Nov 1;294:382-390 [PMID: 34315100]
  12. Int J Environ Res Public Health. 2022 Oct 03;19(19): [PMID: 36231935]
  13. Suicide Life Threat Behav. 2020 Feb;50(1):111-121 [PMID: 31441952]
  14. Internet Interv. 2021 Jun 24;25:100422 [PMID: 34401381]
  15. Int J Environ Res Public Health. 2021 Jun 05;18(11): [PMID: 34198855]
  16. Soc Psychiatry Psychiatr Epidemiol. 2014 Sep;49(9):1379-87 [PMID: 24797397]
  17. J Affect Disord Rep. 2021 Apr;4: [PMID: 34142103]
  18. J Am Med Inform Assoc. 2021 Dec 28;29(1):62-71 [PMID: 34725687]
  19. JAMA Psychiatry. 2015 Dec;72(12):1192-8 [PMID: 26535958]
  20. Compr Psychiatry. 2017 Jul;76:69-78 [PMID: 28431270]
  21. Int J Environ Res Public Health. 2022 Aug 19;19(16): [PMID: 36011981]
  22. Front Digit Health. 2023 Nov 08;5:1278186 [PMID: 38026836]
  23. Biomed Inform Insights. 2018 Aug 27;10:1178222618792860 [PMID: 30158822]
  24. Psychiatry Res. 2017 Mar;249:311-317 [PMID: 28152464]
  25. Gen Hosp Psychiatry. 2017 Jul;47:20-28 [PMID: 28807134]
  26. BMC Public Health. 2021 May 19;21(1):950 [PMID: 34011334]
  27. Crisis. 2020 Mar;41(Suppl 1):S3-S7 [PMID: 32208759]
  28. J Affect Disord. 2013 Sep 25;150(3):923-30 [PMID: 23856278]
  29. Clin Epidemiol Glob Health. 2021 Jan-Mar;9:299-303 [PMID: 33073059]
  30. J Psychiatr Res. 2020 May;124:123-130 [PMID: 32145494]
  31. Nutrients. 2023 Apr 04;15(7): [PMID: 37049606]
  32. Health Informatics J. 2021 Jan-Mar;27(1):1460458221989395 [PMID: 33745355]
  33. Environ Health Perspect. 2023 Jul;131(7):77001 [PMID: 37466317]
  34. J Affect Disord. 2018 May;232:34-40 [PMID: 29477096]
  35. Suicide Life Threat Behav. 2022 Aug;52(4):696-704 [PMID: 35293010]
  36. J Clin Med. 2020 Feb 29;9(3): [PMID: 32121362]
  37. Neurosci Lett. 2016 Jun 20;625:56-63 [PMID: 26868600]
  38. Nutr Res Pract. 2022 Apr;16(2):194-204 [PMID: 35392528]
  39. J Affect Disord. 2020 Jun 15;271:169-177 [PMID: 32479313]
  40. Behav Sci (Basel). 2017 Jun 27;7(3): [PMID: 28653978]
  41. Public Health Nutr. 2021 Nov 29;:1-6 [PMID: 34839839]
  42. Ecotoxicol Environ Saf. 2024 Aug;281:116572 [PMID: 38896903]
  43. J Water Health. 2020 Oct;18(5):835-842 [PMID: 33095204]
  44. J Affect Disord. 2019 Jan 1;242:60-67 [PMID: 30172226]
  45. J Affect Disord. 2019 Sep 1;256:468-472 [PMID: 31254722]
  46. Gen Hosp Psychiatry. 2009 Mar-Apr;31(2):181-4 [PMID: 19269541]
  47. J Am Acad Psychiatry Law. 2004;32(2):158-62 [PMID: 15281417]
  48. Nutr Neurosci. 2007 Feb-Apr;10(1-2):51-8 [PMID: 17539483]
  49. Suicide Life Threat Behav. 2019 Oct;49(5):1255-1265 [PMID: 30368871]
  50. Comput Math Methods Med. 2016;2016:8708434 [PMID: 27752278]
  51. BMJ Health Care Inform. 2020 Oct;27(3): [PMID: 33037037]
  52. JAMA Netw Open. 2022 Apr 1;5(4):e226019 [PMID: 35380642]
  53. J Biomed Inform. 2018 Dec;88:11-19 [PMID: 30368002]
  54. Soc Sci Med. 2021 Aug;283:114176 [PMID: 34214846]
  55. BMJ Open. 2020 May 11;10(5):e038181 [PMID: 32398340]
  56. Braz J Psychiatry. 2017 Jan-Mar;39(1):1-11 [PMID: 27783715]
  57. BMC Med Inform Decis Mak. 2018 May 29;18(1):30 [PMID: 29843698]
  58. Gen Psychiatr. 2021 Dec 10;34(6):e100576 [PMID: 34970640]
  59. Acta Paediatr. 2011 Nov;100(11):e215-22 [PMID: 21627691]
  60. Methods Inf Med. 2022 Sep;61(3-04):84-89 [PMID: 36096143]
  61. Psychiatry Investig. 2018 Nov;15(11):1030-1036 [PMID: 30301301]
  62. Suicide Life Threat Behav. 2024 Feb;54(1):83-94 [PMID: 37983744]
  63. Nutrients. 2022 Apr 29;14(9): [PMID: 35565838]
  64. Trends Psychiatry Psychother. 2020 Jul-Sep;42(3):276-281 [PMID: 32997043]
  65. J Clin Psychiatry. 2023 Nov 29;85(1): [PMID: 38019588]
  66. Psychiatr Serv. 2021 May 1;72(5):555-562 [PMID: 33691491]
  67. Am J Geriatr Psychiatry. 2014 Nov;22(11):1325-35 [PMID: 24012228]
  68. Front Public Health. 2022 Jan 18;9:736948 [PMID: 35118036]
  69. IEEE J Biomed Health Inform. 2019 Nov;23(6):2286-2293 [PMID: 31144649]
  70. Arch Suicide Res. 2020 Apr-Jun;24(2):218-235 [PMID: 31079565]
  71. J Affect Disord. 2020 Apr 1;266:63-70 [PMID: 32056938]
  72. Mol Nutr Food Res. 2020 Jan;64(2):e1901012 [PMID: 31845486]
  73. Br J Psychiatry. 2013 Dec;203(6):422-7 [PMID: 24115342]
  74. BMC Psychiatry. 2018 Apr 25;18(1):113 [PMID: 29699523]
  75. J Adolesc Health. 2021 Jun;68(6):1183-1188 [PMID: 33712380]
  76. J Affect Disord Rep. 2022 Dec;10: [PMID: 36644339]
  77. NPJ Digit Med. 2020 May 26;3:78 [PMID: 32509975]
  78. Aust N Z J Psychiatry. 2019 Oct;53(10):954-964 [PMID: 31347389]
  79. Int J Environ Res Public Health. 2020 Aug 15;17(16): [PMID: 32824149]
  80. Psychol Rep. 1987 Dec;61(3):802 [PMID: 3438404]
  81. J Affect Disord. 2021 Dec 1;295:410-415 [PMID: 34507220]
  82. Prostaglandins Leukot Essent Fatty Acids. 2021 Feb;165:102247 [PMID: 33482466]
  83. Am J Geriatr Psychiatry. 2005 Oct;13(10):876-83 [PMID: 16223966]
  84. JAMIA Open. 2021 Mar 17;4(1):ooab011 [PMID: 33758800]
  85. Int J Biomed Sci. 2014 Mar;10(1):61-8 [PMID: 24711751]
  86. Nutrition. 2005 Jun;21(6):711-7 [PMID: 15925296]
  87. Int J Soc Psychiatry. 2015 Feb;61(1):73-81 [PMID: 24903684]
  88. JMIR Mhealth Uhealth. 2020 Jun 26;8(6):e15901 [PMID: 32442152]
  89. Turk J Pharm Sci. 2020 Dec 23;17(6):659-666 [PMID: 33389968]
  90. JAMA Psychiatry. 2022 Nov 1;79(11):1118-1123 [PMID: 36169979]
  91. Autism. 2023 Nov;27(8):2310-2323 [PMID: 37050857]
  92. Biomed Inform Insights. 2012;5(Suppl. 1):17-30 [PMID: 22879757]

Word Cloud

Created with Highcharts 10.0.0AIMLsuicidestrategiesreviewintelligencelearningrisktechnologiesdietaryenvironmentalmodelscontaminantsSuicidenearlyparticularlyregionslikeneedmachinepredictionpreventionfactorsincludinginfluencescomprehensivedatahealthbehaviorsaddressArtificialBackground:remainsleadingcausedeathglobally800000deathsannuallyamongyoungadultsEuropeAustraliaMiddleEasthighlightingurgentinnovativeinterventionbeyondconventionalmethodsObjectives:aimsexploretransformativeroleartificialenhancingdevelopingeffectiveexaminingintegratecomplexpsychiatricsocio-economicMethods:literaturedatabasesPubMedWebScienceconductedfocusingstudiesutilizeassessedefficacyvariousRandomForestneuralnetworksothersanalyzingelectronicrecordssocialmediadigitalAdditionallyevaluatedbroadspectruminfluencesuicidalwellimpactlithiumarsenicfluoridemercuryorganophosphoruspesticidesConclusions:revolutionizingachieving90 %predictiveaccuracyintegratingdiversesourcesfindingshighlightgeographicallydemographicallytailoredpublicinterventionsmultifactorialnatureHoweverdeploymentmustcriticalethicalprivacyconcernsensuringcomplianceregulationsdevelopmenttransparentethicallyguidedsystemsAI-driventoolsvirtualtherapistschatbotsessentialimmediatesupportunderservedtechniquesprediction:IntegratingpatternsDietaryEnvironmentalMachine

Similar Articles

Cited By