Freshness in Salmon by Hand-Held Devices: Methods in Feature Selection and Data Fusion for Spectroscopy.

Mike Hardy, Hossein Kashani Zadeh, Angelis Tzouchas, Fartash Vasefi, Nicholas MacKinnon, Gregory Bearman, Yaroslav Sokolov, Simon A Haughey, Christopher T Elliott
Author Information
  1. Mike Hardy: National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K. ORCID
  2. Hossein Kashani Zadeh: SafetySpect Incorporated, Grand Forks, North Dakota 58202, United States.
  3. Angelis Tzouchas: SafetySpect Incorporated, Grand Forks, North Dakota 58202, United States.
  4. Fartash Vasefi: SafetySpect Incorporated, Grand Forks, North Dakota 58202, United States.
  5. Nicholas MacKinnon: SafetySpect Incorporated, Grand Forks, North Dakota 58202, United States.
  6. Gregory Bearman: SafetySpect Incorporated, Grand Forks, North Dakota 58202, United States.
  7. Yaroslav Sokolov: SafetySpect Incorporated, Grand Forks, North Dakota 58202, United States.
  8. Simon A Haughey: National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K.
  9. Christopher T Elliott: National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K. ORCID

Abstract

Salmon fillet was analyzed via hand-held optical devices: fluorescence (@340 nm) and absorption spectroscopy across the visible and near-infrared (NIR) range (400-1900 nm). Spectroscopic measurements were benchmarked with nucleotide assays and potentiometry in an exploratory set of experiments over 11 days, with changes to spectral profiles noted. A second enlarged spectroscopic data set, over a 17 day period, was then acquired, and fillet freshness was classified ��1 day via four machine learning (ML) algorithms: linear discriminant analysis, Gaussian na��ve, weighted -nearest neighbors, and an ensemble bagged tree method. Dual-mode data fusion returned almost perfect accuracies (mean = 99.5 �� 0.51%), while single-mode ML analyses (fluorescence, visible absorbance, and NIR absorbance) returned lower mean accuracies at greater spread (77.1 �� 10.1%). Single-mode fluorescence accuracy was especially poor; however, via principal component analysis, we found that a truncated fluorescence data set of four variables (wavelengths) could predict "fresh" and "spoilt" salmon fillet based on a subtle peak redshift as the fillet aged, albeit marginally short of statistical significance (95% confidence ellipse). Thus, whether by feature selection of one spectral data set, or the combination of multiple data sets through different modes, this study lays the foundation for better determination of fish freshness within the context of rapid spectroscopic analyses.

References

  1. Front Nutr. 2021 Jun 17;8:680357 [PMID: 34222304]
  2. Anal Chem. 2014 Sep 16;86(18):9006-12 [PMID: 25133323]
  3. Nat Rev Mol Cell Biol. 2022 Jan;23(1):40-55 [PMID: 34518686]
  4. Food Sci Nutr. 2020 May 12;8(7):3262-3273 [PMID: 32724591]
  5. Curr Res Food Sci. 2022 Jun 03;5:1017-1027 [PMID: 35755306]
  6. ACS Nano. 2013 Jun 25;7(6):5350-9 [PMID: 23713574]
  7. Sci Rep. 2019 Jul 25;9(1):10812 [PMID: 31346227]
  8. Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12549-50 [PMID: 26430243]
  9. Discov Nano. 2023 Dec 11;18(1):153 [PMID: 38082047]
  10. Foods. 2021 Apr 27;10(5): [PMID: 33925477]
  11. Anal Chem. 2020 Mar 3;92(5):4053-4064 [PMID: 32045217]
  12. Faraday Discuss. 2017 Dec 4;205:491-504 [PMID: 28926064]
  13. Sensors (Basel). 2023 May 28;23(11): [PMID: 37299875]
  14. Foods. 2023 Dec 16;12(24): [PMID: 38137302]
  15. Anal Chim Acta. 2021 Nov 15;1185:339074 [PMID: 34711319]
  16. Sensors (Basel). 2023 Nov 09;23(22): [PMID: 38005450]
  17. Anal Chim Acta. 2015 Sep 3;891:1-14 [PMID: 26388360]
  18. Anal Chem. 2017 Nov 7;89(21):11484-11490 [PMID: 28952718]
  19. J Phys Chem C Nanomater Interfaces. 2022 Aug 18;126(32):13774-13784 [PMID: 36017358]
  20. Talanta. 2015 Oct 1;143:145-156 [PMID: 26078142]
  21. Nat Protoc. 2021 Dec;16(12):5426-5459 [PMID: 34741152]
  22. Food Chem. 2024 Apr 16;438:138029 [PMID: 38006696]
  23. Faraday Discuss. 2019 Aug 15;218(0):52-71 [PMID: 31120465]
  24. Appl Spectrosc. 2021 Apr;75(4):361-375 [PMID: 33393349]
  25. Nanoscale. 2024 Feb 15;16(7):3293-3323 [PMID: 38273798]
  26. Comput Methods Programs Biomed. 2024 Mar;245:108014 [PMID: 38246097]

Word Cloud

Created with Highcharts 10.0.0datafilletfluorescencesetviaSalmonnmvisibleNIRspectralspectroscopicdayfreshnessfourMLanalysisreturnedaccuraciesmean��analysesabsorbanceanalyzedhand-heldopticaldevices:@340absorptionspectroscopyacrossnear-infraredrange400-1900Spectroscopicmeasurementsbenchmarkednucleotideassayspotentiometryexploratoryexperiments11dayschangesprofilesnotedsecondenlarged17periodacquiredclassified��1machinelearningalgorithms:lineardiscriminantGaussianna��veweighted-nearestneighborsensemblebaggedtreemethodDual-modefusionalmostperfect=995051%single-modelowergreaterspread771101%Single-modeaccuracyespeciallypoorhoweverprincipalcomponentfoundtruncatedvariableswavelengthspredict"fresh""spoilt"salmonbasedsubtlepeakredshiftagedalbeitmarginallyshortstatisticalsignificance95%confidenceellipseThuswhetherfeatureselectiononecombinationmultiplesetsdifferentmodesstudylaysfoundationbetterdeterminationfishwithincontextrapidFreshnessHand-HeldDevices:MethodsFeatureSelectionDataFusionSpectroscopy

Similar Articles

Cited By