Development of a diagnostic multivariable prediction model of a positive SARS-CoV-2 RT-PCR result in healthcare workers with suspected SARS-CoV-2 infection in hospital settings.

Sandra Liliana Valderrama-Beltrán, Juliana Cuervo-Rojas, Martín Rondón, Juan Sebastián Montealegre-Diaz, Juan David Vera, Samuel Martinez-Vernaza, Alejandra Bonilla, Camilo Molineros, Viviana Fierro, Atilio Moreno, Leidy Villalobos, Beatriz Ariza, Carlos Álvarez-Moreno
Author Information
  1. Sandra Liliana Valderrama-Beltrán: Faculty of Medicine, Department of Clinical Epidemiology and Biostatistics, PhD Program in Clinical Epidemiology, Pontificia Universidad Javeriana, Bogotá, Colombia. ORCID
  2. Juliana Cuervo-Rojas: Faculty of Medicine, Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia. ORCID
  3. Martín Rondón: Faculty of Medicine, Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia.
  4. Juan Sebastián Montealegre-Diaz: Faculty of Medicine, Department of Internal Medicine, Division of Infectious Diseases, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Infectious Diseases Research Group, Bogotá, Colombia.
  5. Juan David Vera: Faculty of Medicine, Department of Internal Medicine, Division of Infectious Diseases, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Infectious Diseases Research Group, Bogotá, Colombia.
  6. Samuel Martinez-Vernaza: Faculty of Medicine, Department of Internal Medicine, Division of Infectious Diseases, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Infectious Diseases Research Group, Bogotá, Colombia.
  7. Alejandra Bonilla: Faculty of Medicine, Department of Internal Medicine, Division of Infectious Diseases, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Infectious Diseases Research Group, Bogotá, Colombia.
  8. Camilo Molineros: Faculty of Medicine, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá, Colombia.
  9. Viviana Fierro: Human Resources Office, Hospital Universitario San Ignacio, Bogotá, Colombia.
  10. Atilio Moreno: Faculty of Medicine, Department of Internal Medicine, Division of Emergency, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá, Colombia.
  11. Leidy Villalobos: Faculty of Medicine, Department of Internal Medicine, Division of Emergency, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá, Colombia.
  12. Beatriz Ariza: Clinical Laboratory, Clinical Laboratory Science Research Group, Hospital Universitario San Ignacio, Bogotá, Colombia. ORCID
  13. Carlos Álvarez-Moreno: Clínica Colsanitas and Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.

Abstract

BACKGROUND: Despite declining COVID-19 incidence, healthcare workers (HCWs) still face an elevated risk of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We developed a diagnostic multivariate model to predict positive reverse transcription polymerase chain reaction (RT-PCR) results in HCWs with suspected SARS-CoV-2 infection.
METHODS: We conducted a cross-sectional study on episodes involving suspected SARS-CoV-2 symptoms or close contact among HCWs in Bogotá, Colombia. Potential predictors were chosen based on clinical relevance, expert knowledge, and literature review. Logistic regression was used, and the best model was selected by evaluating model fit with Akaike Information Criterion (AIC), deviance, and maximum likelihood.
RESULTS: The study included 2498 episodes occurring between March 6, 2020, to February 2, 2022. The selected variables were age, socioeconomic status, occupation, service, symptoms (fever, cough, fatigue/weakness, diarrhea, anosmia or dysgeusia), asthma, history of SARS-CoV-2, vaccination status, and population-level RT-PCR positivity. The model achieved an AUC of 0.79 (95% CI 0.77-0.81), with 93% specificity, 36% sensitivity, and satisfactory calibration.
CONCLUSIONS: We present an innovative diagnostic prediction model that as a special feature includes a variable that represents SARS-CoV-2 epidemiological situation. Given its performance, we suggest using the model differently based on the level of viral circulation in the population. In low SARS-CoV-2 circulation periods, the model could serve as a replacement diagnostic test to classify HCWs as infected or not, potentially reducing the need for RT-PCR. Conversely, in high viral circulation periods, the model could be used as a triage test due to its high specificity. If the model predicts a high probability of a positive RT-PCR result, the HCW may be considered infected, and no further testing is performed. If the model indicates a low probability, the HCW should undergo a COVID-19 test. In resource-limited settings, this model can help prioritize testing and reduce expenses.

References

  1. Sci Rep. 2023 Nov 14;13(1):19863 [PMID: 37964010]
  2. JAMIA Open. 2022 May 18;5(2):ooac041 [PMID: 35677186]
  3. J Hosp Infect. 2024 May;147:180-187 [PMID: 38554805]
  4. Am J Epidemiol. 2021 Jan 4;190(1):161-175 [PMID: 32870978]
  5. Lab Med. 2021 Mar 15;52(2):146-149 [PMID: 33340312]
  6. Br J Cancer. 2015 Jan 20;112(2):251-9 [PMID: 25562432]
  7. Cochrane Database Syst Rev. 2020 Jul 7;7:CD013665 [PMID: 32633856]
  8. Ann Saudi Med. 2023 May-Jun;43(3):161-165 [PMID: 37125962]
  9. Clin Infect Dis. 2021 Jan 22;: [PMID: 33480973]
  10. BMC Pulm Med. 2023 Mar 9;23(1):81 [PMID: 36894945]
  11. JAMA. 2024 Feb 6;331(5):382-383 [PMID: 38214935]
  12. Infect Control Hosp Epidemiol. 2023 May;44(5):821-823 [PMID: 35506167]
  13. Ann Intern Med. 2020 Jul 21;173(2):120-136 [PMID: 32369541]
  14. Commun Med (Lond). 2022 Jun 15;2:72 [PMID: 35721829]
  15. Clin Microbiol Infect. 2022 May;28(5):710-717 [PMID: 34543759]
  16. Infect Drug Resist. 2023 May 29;16:3315-3328 [PMID: 37274362]
  17. PLoS One. 2022 Sep 19;17(9):e0274484 [PMID: 36121816]
  18. Lancet Infect Dis. 2024 Sep;24(9):964-973 [PMID: 38761806]
  19. Microbes Infect. 2023 Jan-Feb;25(1-2):105077 [PMID: 36400331]
  20. Respir Res. 2023 Jan 11;24(1):10 [PMID: 36631852]
  21. Ann Intern Med. 2022 Jun;175(6):831-837 [PMID: 35286147]
  22. Proc Natl Acad Sci U S A. 2021 Feb 23;118(8): [PMID: 33597296]
  23. Ann Transl Med. 2020 May;8(10):629 [PMID: 32566566]
  24. Nature. 2023 Nov;623(7985):132-138 [PMID: 37853126]
  25. PLoS One. 2021 Mar 10;16(3):e0248438 [PMID: 33690722]
  26. Prev Med Rep. 2022 Jun;27:101798 [PMID: 35469291]

MeSH Term

Humans
COVID-19
Health Personnel
SARS-CoV-2
Adult
Male
Cross-Sectional Studies
Female
Colombia
Middle Aged
Reverse Transcriptase Polymerase Chain Reaction
COVID-19 Nucleic Acid Testing
Hospitals
Logistic Models

Word Cloud

Created with Highcharts 10.0.0modelSARS-CoV-2RT-PCRHCWsdiagnosticinfectionpositivesuspectedcirculationtesthighCOVID-19healthcareworkers2studyepisodessymptomsbasedusedselectedstatus0specificitypredictionvirallowperiodsinfectedprobabilityresultHCWtestingsettingsBACKGROUND:DespitedecliningincidencestillfaceelevatedriskSevereAcuteRespiratorySyndromeCoronavirusdevelopedmultivariatepredictreversetranscriptionpolymerasechainreactionresultsMETHODS:conductedcross-sectionalinvolvingclosecontactamongBogotáColombiaPotentialpredictorschosenclinicalrelevanceexpertknowledgeliteraturereviewLogisticregressionbestevaluatingfitAkaikeInformationCriterionAICdeviancemaximumlikelihoodRESULTS:included2498occurringMarch62020February2022variablesagesocioeconomicoccupationservicefevercoughfatigue/weaknessdiarrheaanosmiadysgeusiaasthmahistoryvaccinationpopulation-levelpositivityachievedAUC7995%CI77-08193%36%sensitivitysatisfactorycalibrationCONCLUSIONS:presentinnovativespecialfeatureincludesvariablerepresentsepidemiologicalsituationGivenperformancesuggestusingdifferentlylevelpopulationservereplacementclassifypotentiallyreducingneedConverselytriageduepredictsmayconsideredperformedindicatesundergoresource-limitedcanhelpprioritizereduceexpensesDevelopmentmultivariablehospital

Similar Articles

Cited By