Characterization and bioinformatic analysis of a new chimeric endolysin against MRSA with great stability.

Sanaz Momen, Neda Soleimani, Farzaneh Azizmohseni, Yasaman Ahmadbeigi, Seddigheh Borhani, Zahra Amini-Bayat
Author Information
  1. Sanaz Momen: Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
  2. Neda Soleimani: Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
  3. Farzaneh Azizmohseni: Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
  4. Yasaman Ahmadbeigi: Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
  5. Seddigheh Borhani: Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
  6. Zahra Amini-Bayat: Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran. Amini-bayat@irost.org. ORCID

Abstract

Antibiotics become less effective in treating infectious diseases as resistance increases. Staphylococcus aureus is a global problem due to its ability to form biofilms and resistance mechanisms. Phage endolysin is one of the most promising methods for combating antibiotic resistance. ZAM-MSC chimeric endolysin has three domains derived from SAL1 and lysostaphin, which target the peptide bridge of peptidoglycan. In this study purified ZAM-MSC (with yield of 30 mg/lit) had bactericidal activity against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) at low concentrations (2.38 ��g/ml and 1.88 ��g/ml, respectively). The antibacterial spectrum revealed that ZAM-MSC was active against diverse Staphylococci. it has maintained 100% stability after 24 h incubation in pH 5 to 10 against S. aureus, as well as demonstrated significant thermostability and maintained nearly its full activity at different temperatures (4-42 ��C) up to 1 day of incubation. The anti-biofilm activity of various concentrations of ZAM-MSC against MSSA and MRSA biofilms was not dose-dependent, and antibiofilm activity was observed even at low concentrations (14 ��g/ml). Further, the molecular dynamics simulations demonstrated that the ZAM-MSC chimer and its parent proteins remained dynamically stable, showing similar flexibility despite the size and hydrogen bond number differences. In conclusion, the study reveals that chimeric ZAM-MSC is a distinctive enzyme with exceptional biochemical properties and rapid lytic activity against Staphylococci.

Keywords

References

  1. J Clin Microbiol. 2011 Jan;49(1):111-7 [PMID: 21048011]
  2. Microb Cell Fact. 2024 Mar 25;23(1):89 [PMID: 38528536]
  3. Virus Genes. 2020 Aug;56(4):480-497 [PMID: 32367411]
  4. Int J Biol Macromol. 2024 Jan;254(Pt 2):127969 [PMID: 37944719]
  5. Nat Struct Biol. 1999 May;6(5):403-6 [PMID: 10331860]
  6. Microb Pathog. 2022 Oct;171:105743 [PMID: 36044936]
  7. Nat Chem Biol. 2020 Jan;16(1):24-30 [PMID: 31686030]
  8. Appl Microbiol Biotechnol. 2008 Sep;80(4):555-61 [PMID: 18607587]
  9. Res Vet Sci. 2017 Apr;111:113-119 [PMID: 28235706]
  10. Antimicrob Agents Chemother. 2014;58(1):536-42 [PMID: 24189265]
  11. Curr Issues Mol Biol. 2021;41:539-596 [PMID: 33048060]
  12. Appl Environ Microbiol. 2018 Jul 17;84(15): [PMID: 29776929]
  13. J Appl Microbiol. 2011 Oct;111(4):1025-35 [PMID: 21812876]
  14. Front Microbiol. 2021 Jan 15;11:615887 [PMID: 33519773]
  15. Sci Rep. 2019 Apr 12;9(1):5965 [PMID: 30979923]
  16. Pharmaceuticals (Basel). 2010 Apr 19;3(4):1139-1161 [PMID: 27713293]
  17. Appl Biochem Biotechnol. 2016 Oct;180(3):544-557 [PMID: 27168405]
  18. J Infect Public Health. 2021 Dec;14(12):1750-1766 [PMID: 34756812]
  19. J Mol Biol. 1994 Jan 14;235(2):625-34 [PMID: 8289285]
  20. FEMS Microbiol Lett. 2008 Oct;287(2):185-91 [PMID: 18721148]
  21. Food Microbiol. 2019 Dec;84:103245 [PMID: 31421782]
  22. J Biochem Biophys Methods. 2007 Apr 10;70(3):531-3 [PMID: 17169435]
  23. F1000Res. 2016 Feb 18;5:189 [PMID: 26973785]
  24. Microbiol Spectr. 2023 Jun 15;11(3):e0505022 [PMID: 37125939]
  25. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  26. Biotechnol Rep (Amst). 2020 Oct 24;28:e00547 [PMID: 33204659]
  27. PLoS One. 2015 Mar 27;10(3):e0119264 [PMID: 25816325]
  28. Antibiotics (Basel). 2021 Oct 20;10(11): [PMID: 34827215]
  29. J Comput Chem. 2008 Aug;29(11):1859-65 [PMID: 18351591]
  30. Mol Biol (Mosk). 2008 Jul-Aug;42(4):701-6 [PMID: 18856071]
  31. FEMS Microbiol Lett. 2013 May;342(1):30-6 [PMID: 23413880]
  32. J Clin Microbiol. 2019 Nov 22;57(12): [PMID: 31578263]
  33. ACS Infect Dis. 2021 Aug 13;7(8):2081-2092 [PMID: 34047546]
  34. Clin Microbiol Rev. 2017 Nov 29;31(1): [PMID: 29187396]
  35. J Biol Chem. 2006 Apr 28;281(17):11586-94 [PMID: 16510449]
  36. FEMS Microbiol Rev. 2008 Mar;32(2):149-67 [PMID: 18194336]
  37. Front Pharmacol. 2019 May 08;10:513 [PMID: 31139086]
  38. Microbiol Res. 2021 Jul;248:126746 [PMID: 33773329]
  39. Virol J. 2014 Jul 26;11:133 [PMID: 25064136]
  40. Front Cell Infect Microbiol. 2021 Apr 15;11:668430 [PMID: 33937105]
  41. Viruses. 2021 Apr 15;13(4): [PMID: 33920965]
  42. Int J Antimicrob Agents. 2013 Feb;41(2):156-61 [PMID: 23276502]
  43. J Chem Phys. 2007 Jan 7;126(1):014101 [PMID: 17212484]
  44. Antibiotics (Basel). 2019 Aug 27;8(3): [PMID: 31461842]

Word Cloud

Created with Highcharts 10.0.0ZAM-MSCaureusactivityresistanceStaphylococcusendolysinMRSAchimericconcentrations��g/mlbiofilmsstudyMSSAlow1StaphylococcimaintainedstabilityincubationdemonstratedAntibioticsbecomelesseffectivetreatinginfectiousdiseasesincreasesglobalproblemdueabilityformmechanismsPhageonepromisingmethodscombatingantibioticthreedomainsderivedSAL1lysostaphintargetpeptidebridgepeptidoglycanpurifiedyield30mg/litbactericidalmethicillin-sensitivemethicillin-resistant23888respectivelyantibacterialspectrumrevealedactivediverse100%24hpH510Swellsignificantthermostabilitynearlyfulldifferenttemperatures4-42 ��Cdayanti-biofilmvariousdose-dependentantibiofilmobservedeven14moleculardynamicssimulationschimerparentproteinsremaineddynamicallystableshowingsimilarflexibilitydespitesizehydrogenbondnumberdifferencesconclusionrevealsdistinctiveenzymeexceptionalbiochemicalpropertiesrapidlyticCharacterizationbioinformaticanalysisnewgreatAntibioticBiofilmChimeric

Similar Articles

Cited By

No available data.