5'Hox genes regulate pattern formation along the axes of the limb. Previously, we showed that Hoxa13/Hoxd13 double-mutant newts lacked all digits of the forelimbs during development and regeneration, showing that newt Hox13 is necessary for digit formation in development and regeneration. In addition, we found another unique phenotype. Some of the Hox13 crispant newts showed hindlimb defects, in which whole or almost whole hindlimbs were lost, suggesting a novel function of Hox13 in limb development. Using germline mutants, we showed that mutation in Hox13 led to hindlimb defects. The limb buds of Hox13 crispants formed, however, did not show outgrowth. Expression of Fgf10 and Tbx4, which are involved in limb outgrowth, decreased in the hindlimb buds of Hox13 crispants. In addition, hindlimb defects were observed in both Fgf10 and Tbx4 crispant newts. Finally, Fgf10 and Tbx4 interacted with Hox13 genetically. Our results revealed a novel function of Hox13 in regulating the outgrowth of the newt hindlimb bud through interaction with Fgf10 and Tbx4.
Agarwal, P., Wylie, J. N., Galceran, J., Arkhitko, O., Li, C., Deng, C., Grosschedl, R., & Bruneau, B. (2003). Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo. Development, 130(3), 623–633.
Capdevila, J., & Izpisúa Belmonte, J. C. (2001). Patterning mechanisms controlling vertebrate limb development. Annual Review of Cell and Developmental Biology, 17(1), 87–132.
Don, E. K., Currie, P. D., & Cole, N. J. (2013). The evolutionary history of the development of the pelvic fin/hindlimb. Journal of Anatomy, 222(1), 114–133.
Don, E. K., de, T., Doggett, K., Hall, T. E., Heng, B., Badrock, A. P., Winnick, C., Nicholson, G., Guillemin, G., Currie, P., Hesselson, D., Heath, J., & Cole, N. (2016). Genetic basis of hindlimb loss in a naturally occurring vertebrate model. Biology Open, 5(3), 359–366.
Don, E. K., Hall, T. E., Currie, P. D., & Cole, N. J. (2011). Morphology of pelvic fin loss in a zebrafish strain (Danio rerio). Journal of Morphology, 272(5), 583–589.
Fromental‐Ramain, C., Warot, X., Lakkaraju, S., Favier, B., Haack, H., Birling, C., Dierich, A., Dollé, P., & Chambon, P. (1996). Specific and redundant functions of the paralogous Hoxa‐9 and Hoxd‐9 genes in forelimb and axial skeleton patterning. Development (Cambridge, England), 122(2), 461–472.
Fromental‐Ramain, C., Warot, X., Messadecq, N., LeMeur, M., Dollé, P., & Chambon, P. (1996). Hoxa‐13 and Hoxd‐13 play a crucial role in the patterning of the limb autopod. Development, 122(10), 2997–3011.
Hayashi, T., Nakajima, M., Kyakuno, M., Doi, K., Manabe, I., Azuma, S., & Takeuchi, T. (2019). Advanced microinjection protocol for gene manipulation using the model newt pleurodeles waltl. The International Journal of Developmental Biology, 63(6–7), 281–286.
Hayashi, T., Yokotani, N., Tane, S., Matsumoto, A., Myouga, A., Okamoto, M., & Takeuchi, T. (2013). Molecular genetic system for regenerative studies using newts. Development, Growth & Differentiation, 55(2), 229–236.
Iida, M., Suzuki, M., Sakane, Y., Nishide, H., Uchiyama, I., Yamamoto, T., Suzuki, K. T., & Fujii, S. (2020). A simple and practical workflow for genotypingof CRISPR‐Cas9‐based knockout phenotypes using multiplexed amplicon sequencing. Genes to Cells, 25(7), 498–509.
Itou, J., Kawakami, H., Quach, T., Osterwalder, M., Evans, S. M., Zeller, R., & Kawakami, Y. (2012). Islet1 regulates establishment of the posterior hindlimb field upstream of the Hand2‐shh morphoregulatory gene network in mouse embryos. Development, 139(9), 1620–1629.
Kvon, E. Z., Kamneva, O. K., Melo, U. S., Barozzi, I., Osterwalder, M., Mannion, B. J., Tissières, V., Pickle, C., Plajzer‐Frick, I., Lee, E., Kato, M., Garvin, T., Akiyama, J., Afzal, V., Lopez‐Rios, J., Rubin, E., Dickel, D., Pennacchio, L., & Visel, A. (2016). Progressive loss of function in a limb enhancer during Snake evolution. Cell, 167(3), 633–642.e11.
Lanctôt, C., Moreau, A., Chamberland, M., Tremblay, M. L., & Drouin, J. (1999). Hindlimb patterning and mandible development require the Ptx1 gene. Development, 126(9), 1805–1810.
Lin, Q., Fan, S., Zhang, Y., Xu, M., Zhang, H., Yang, Y., Lee, A., Woltering, J., Ravi, V., Gunter, H., Luo, W., Gao, Z., Lim, Z., Qin, G., Schneider, R., Wang, X., Xiong, P., Li, G., Wang, K., … Venkatesh, B. (2016). The seahorse genome and the evolution of its specialized morphology. Nature, 540(7633), 395–399.
Logan, M., & Tabin, C. J. (1999). Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity. Science, 283(5408), 1736–1739.
Mannaert, A., Roelants, K., Bossuyt, F., & Leyns, L. (2006). A PCR survey for posterior Hox genes in amphibians. Molecular Phylogenetics and Evolution, 38(2), 449–458.
Marcil, A., Dumontier, É., Chamberland, M., Camper, S. A., & Drouin, J. (2003). Pitx1 and Pitx2 are required for development of hindlimb buds. Development, 130(1), 45–55.
Matsunami, M., Suzuki, M., Haramoto, Y., Fukui, A., Inoue, T., Yamaguchi, K., Uchiyama, I., Mori, K., Tashiro, K., Ito, Y., Takeuchi, T., Suzuki, K. I., Agata, K., Shigenobu, S., & Hayashi, T. (2019). A comprehensive reference transcriptome resource for the Iberian ribbed newt Pleurodeles waltl, an emerging model for developmental and regeneration biology. DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 26(3), 217–229.
Min, H., Danilenko, D. M., Scully, S. A., Bolon, B., Ring, B. D., Tarpley, J. E., DeRose, M., & Simonet, W. (1998). Fgf‐10 is required for both limb and lung development and exhibits striking functional similarity to drosophila branchless. Genes and Development, 12(20), 3156–3161.
Minguillon, C., Nishimoto, S., Wood, S., Vendrell, E., Gibson‐Brown, J. J., & Logan, M. P. O. (2012). Hox genes regulate the onset of Tbx5 expression in the forelimb. Development, 139(17), 3180–3188.
Moreau, C., Caldarelli, P., Rocancourt, D., Roussel, J., Denans, N., Pourquie, O., & Gros, J. (2019). Timed collinear activation of Hox genes during gastrulation controls the avian forelimb position. Current Biology: CB, 29(1), 35–50.e4.
Naiche, L. A., & Papaioannou, V. E. (2003). Loss of Tbx4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development, 130(12), 2681–2693.
Naiche, L. A., & Papaioannou, V. E. (2007). Tbx4 is not required for hindlimb identity or post‐bud hindlimb outgrowth. Development, 134(1), 93–103.
Naito, Y., Hino, K., Bono, H., & Ui‐Tei, K. (2014). CRISPRdirect: Software for designing CRISPR/Cas guide RNA with reduced off‐target sites. Bioinformatics, 31, 1120–1123.
Nakamura, T., Gehrke, A. R., Lemberg, J., Szymaszek, J., & Shubin, N. H. (2016). Digits and fin rays share common developmental histories. Nature, 537(7619), 225–228.
Ohuchi, H., Nakagawa, T., Yamamoto, A., Araga, A., Ohata, T., Ishimaru, Y., Yoshioka, H., Kuwana, T., Nohno, T., Yamasaki, M., Itoh, N., & Noji, S. (1997). The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development, 124(11), 2235–2244.
Rallis, C., Bruneau, B. G., del, J., Seidman, C. E., Seidman, J. G., Nissim, S., Tabin, C., & Logan, M. (2003). Tbx5 is required for forelimb bud formation and continued outgrowth. Development, 130(12), 2741–2751.
Sekine, K., Ohuchi, H., Fujiwara, M., Yamasaki, M., Yoshizawa, T., Sato, T., Yagishita, N., Matsui, D., Koga, Y., Itoh, N., & Kato, S. (1999). Fgf10 is essential for limb and lung formation. Nature Genetics, 21(1), 138–141.
Sheeba, C. J., & Logan, M. P. O. (2017). The roles of T‐box genes in vertebrate limb development. In M. Frasch (Ed.), Current topics in developmental biology (Vol. 122, pp. 355–381). Academic Press.
Sheth, R., Barozzi, I., Langlais, D., Osterwalder, M., Nemec, S., Carlson, H. L., Stadler, H., Visel, A., Drouin, J., & Kmita, M. (2016). Distal limb patterning requires modulation of cis‐regulatory activities by HOX13. Cell Reports, 17(11), 2913–2926.
Suzuki, M., Hayashi, T., Inoue, T., Agata, K., Hirayama, M., Suzuki, M., Shigenobu, S., Takeuchi, T., Yamamoto, T., & Suzuki, K. I. (2018). Cas9 ribonucleoprotein complex allows direct and rapid analysis of coding and noncoding regions of target genes in Pleurodeles waltl development and regeneration. Developmental Biology, 443(2), 127–136.
Suzuki, M., Okumura, A., Chihara, A., Shibata, Y., Endo, T., Teramoto, M., Agata, K., Bronner, M., & Suzuki, K. I. (2024). Fgf10 mutant newts regenerate normal hindlimbs despite severe developmental defects. Proceedings of the National Academy of Sciences of the United States of America, 121(11), e2314911121.
Swank, S., Sanger, T. J., & Stuart, Y. E. (2021). (non)parallel developmental mechanisms in vertebrate appendage reduction and loss. Ecology and Evolution, 11(22), 15484–15497.
Takeuchi, T., Matsubara, H., Minamitani, F., Satoh, Y., Tozawa, S., Moriyama, T., Maruyama, K., Suzuki, K. I., Shigenobu, S., Inoue, T., Tamura, K., Agata, K., & Hayashi, T. (2022). Newt Hoxa13 has an essential and predominant role in digit formation during development and regeneration. Development, 149(5), dev200282. https://doi.org/10.1242/dev.200282
Tanaka, M., Hale, L. A., Amores, A., Yan, Y. L., Cresko, W. A., Suzuki, T., & Postlethwait, J. H. (2005). Developmental genetic basis for the evolution of pelvic fin loss in the pufferfish Takifugu rubripes. Developmental Biology, 281(2), 227–239.
Wellik, D. M., & Capecchi, M. R. (2003). Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science, 301(5631), 363–367.
Xu, B., & Wellik, D. M. (2011). Axial Hox9 activity establishes the posterior field in the developing forelimb. Proceedings of the National Academy of Sciences of the United States of America, 108(12), 4888–4891.
Grants
JP20K06656/Japan Society for the Promotion of Science
23K05783/Japan Society for the Promotion of Science
JP23KJ1596/Japan Society for the Promotion of Science