Increased copeptin may reflect vasopressin-related metabolic changes after bariatric surgery.

Francesca Galbiati, Imen Becetti, Meghan Lauze, Anna Aulinas, Vibha Singhal, Miriam A Bredella, Elizabeth A Lawson, Madhusmita Misra
Author Information
  1. Francesca Galbiati: Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. ORCID
  2. Imen Becetti: Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
  3. Meghan Lauze: Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
  4. Anna Aulinas: Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IR-Sant Pau, Barcelona, Spain.
  5. Vibha Singhal: Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. ORCID
  6. Miriam A Bredella: Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
  7. Elizabeth A Lawson: Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
  8. Madhusmita Misra: Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. ORCID

Abstract

OBJECTIVE: Mechanisms underlying metabolic improvement following metabolic and bariatric surgery (MBS) may provide insight into novel therapies. Vasopressin improves body composition and protects against hypoglycemia. Associations of copeptin, a stable cleavage product of vasopressin, with BMI and insulin resistance suggest an adaptive increase in vasopressin to counteract metabolic disruption. To our knowledge, no study has investigated copeptin before and after MBS in humans. This study's aim was to investigate copeptin changes following MBS and associations with metabolic parameters.
METHODS: This was a 12-month longitudinal study of 64 youth (78% female; mean age 18.7 [SD 2.8] y) with obesity (mean BMI 45.6 [SD 6.8] kg/m) undergoing MBS (n = 34) or nonsurgical (NS) lifestyle management (n = 30). Fasting copeptin, hemoglobin A1c (HbA1c), homeostatic model assessment for insulin resistance (HOMA-IR), body composition, and resting energy expenditure (REE) were assessed.
RESULTS: Over 12 months, copeptin increased more (time-by-treatment p = 0.017) whereas HbA1c and adiposity decreased more after MBS than NS (ps ≤ 0.036). Copeptin changes correlated negatively with percentage fat mass and REE changes (rho ≤ -0.29; ps ≤ 0.025) in the whole group, and they correlated positively with HbA1c and HOMA-IR (rho ≥ 0.41; false discovery rate-adjusted p = 0.05) and negatively with REE changes (rho = -0.55; false discovery rate-adjusted p = 0.036) in the MBS group.
CONCLUSIONS: Increases in copeptin after weight loss in MBS compared with NS were associated with lower REE and higher HbA1c/HOMA-IR values. Vasopressin may contribute to MBS-related metabolic modifications.

References

  1. Kumar S, Kelly AS. Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clin Proc. 2017;92(2):251‐265. doi:10.1016/j.mayocp.2016.09.017
  2. Becetti I, Singhal V, Nimmala S, et al. Serum oxytocin levels decrease 12 months following sleeve gastrectomy and are associated with decreases in lean mass. Int J Mol Sci. 2023;24(12):10144. doi:10.3390/ijms241210144
  3. Kerem L, Lawson EA. Oxytocin, eating behavior, and metabolism in humans. Handb Clin Neurol. 2021;180:89‐103. doi:10.1016/B978‐0‐12‐820107‐7.00006‐9
  4. Lawson EA. The effects of oxytocin on eating behaviour and metabolism in humans. Nat Rev Endocrinol. 2017;13(12):700‐709. doi:10.1038/nrendo.2017.115
  5. Taveau C, Chollet C, Waeckel L, et al. Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats. Diabetologia. 2015;58(5):1081‐1090. doi:10.1007/s00125‐015‐3496‐9
  6. Yoshimura M, Conway‐Campbell B, Ueta Y. Arginine vasopressin: direct and indirect action on metabolism. Peptides. 2021;142:170555. doi:10.1016/j.peptides.2021.170555
  7. Boone M, Deen PMT. Physiology and pathophysiology of the vasopressin‐regulated renal water reabsorption. Pflugers Arch. 2008;456(6):1005‐1024. doi:10.1007/s00424‐008‐0498‐1
  8. Morimoto I, Yamamoto S, Kai K, Fujihira T, Morita E, Eto S. Centrally administered murine‐leptin stimulates the hypothalamus‐pituitary‐adrenal axis through arginine‐vasopressin. Neuroendocrinology. 2000;71(6):366‐374. doi:10.1159/000054557
  9. Bachner‐Melman R, Ebstein RP. The role of oxytocin and vasopressin in emotional and social behaviors. Handb Clin Neurol. 2014;124;53‐68. doi:10.1016/B978‐0‐444‐59602‐4.00004‐6
  10. Meyer AH, Langhans W, Scharrer E. Vasopressin reduces food intake in goats. Q J Exp Physiol. 1989;74(4):465‐473. doi:10.1113/expphysiol.1989.sp003294
  11. de Langhans W, Delprete E, Scharrer E. Mechanisms of vasopressin's anorectic effect. Physiol Behav. 1991;49(1):169‐176. doi:10.1016/0031‐9384(91)90251‐i
  12. Moresi V, Garcia‐Alvarez G, Pristerà A, et al. Modulation of caspase activity regulates skeletal muscle regeneration and function in response to vasopressin and tumor necrosis factor. PLoS One. 2009;4(5):e5570. doi:10.1371/journal.pone.0005570
  13. Toschi A, Severi A, Coletti D, et al. Skeletal muscle regeneration in mice is stimulated by local overexpression of V1a‐vasopressin receptor. Mol Endocrinol. 2011;25(9):1661‐1673. doi:10.1210/me.2011‐1049
  14. Costa A, Toschi A, Murfuni I, et al. Local overexpression of V1a‐vasopressin receptor enhances regeneration in tumor necrosis factor‐induced muscle atrophy. Biomed Res Int. 2014;2014:1‐14. doi:10.1155/2014/235426
  15. Yibchok‐anun S, Abu‐Basha EA, Yao C‐Y, Panichkriangkrai W, Hsu WH. The role of arginine vasopressin in diabetes‐associated increase in glucagon secretion. Regul Pept. 2004;122(3):157‐162. doi:10.1016/j.regpep.2004.06.010
  16. Adler GK, Majzoub JA. Influence of infused hypertonic saline on the response to insulin‐induced hypoglycemia in man. J Clin Endocrinol Metab. 1987;65(1):116‐121. doi:10.1210/jcem‐65‐1‐116
  17. Bankir L, Bardoux P, Ahloulay M. Vasopressin and diabetes mellitus. Nephron. 2001;87(1):8‐18. doi:10.1159/000045879
  18. Zerbe RL, Vinicor F, Robertson GL. Plasma vasopressin in uncontrolled diabetes mellitus. Diabetes. 1979;28(5):503. doi:10.2337/diab.28.5.503
  19. Taveau C, Chollet C, Bichet DG, et al. Acute and chronic hyperglycemic effects of vasopressin in normal rats: involvement of V1A receptors. Am J Physiol Endocrinol Metab. 2017;312(3):E127‐E135. doi:10.1152/ajpendo.00269.2016
  20. Roussel R, El Boustany R, Bouby N, et al. Plasma copeptin, AVP gene variants, and incidence of type 2 diabetes in a cohort from the community. J Clin Endocrinol Metab. 2016;101(6):2432‐2439. doi:10.1210/jc.2016‐1113
  21. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52(1):112‐119. doi:10.1373/clinchem.2005.060038
  22. Enhörning S, Wang TJ, Nilsson PM, et al. Plasma copeptin and the risk of diabetes mellitus. Circulation. 2010;121(19):2102‐2108. doi:10.1161/CIRCULATIONAHA.109.909663
  23. Enhörning S, Struck J, Wirfält E, Hedblad B, Morgenthaler NG, Melander O. Plasma copeptin, a unifying factor behind the metabolic syndrome. J Clin Endocrinol Metab. 2011;96(7):E1065‐E1072. doi:10.1210/jc.2010‐2981
  24. Enhörning S, Sjögren M, Hedblad B, Nilsson PM, Struck J, Melander O. Genetic vasopressin 1b receptor variance in overweight and diabetes mellitus. Eur J Endocrinol. 2016;174(1):69‐75. doi:10.1530/EJE‐15‐0781
  25. Enhörning S, Leosdottir M, Wallström P, et al. Relation between human vasopressin 1a gene variance, fat intake, and diabetes. Am J Clin Nutr. 2009;89(1):400‐406. doi:10.3945/ajcn.2008.26382
  26. Enhörning S, Bankir L, Bouby N, et al. Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malmö Diet and Cancer Study cardiovascular cohort. Int J Obes. 2013;37(4):598‐603. doi:10.1038/ijo.2012.88
  27. Tenderenda‐Banasiuk E, Wasilewska A, Filonowicz R, Jakubowska U, Waszkiewicz‐Stojda M. Serum copeptin levels in adolescents with primary hypertension. Pediatr Nephrol. 2014;29(3):423‐429. doi:10.1007/s00467‐013‐2683‐5
  28. Tuli G, Munarin J, Tessaris D, Einaudi S, Matarazzo P, de Sanctis L. Distribution of plasma copeptin levels and influence of obesity in children and adolescents. Eur J Pediatr. 2021;180(1):119‐126. doi:10.1007/s00431‐020‐03777‐3
  29. Rothermel J, Kulle A, Holterhus PM, Toschke C, Lass N, Reinehr T. Copeptin in obese children and adolescents: relationships to body mass index, cortisol and gender. Clin Endocrinol. 2016;85(6):868‐873. doi:10.1111/cen.13235
  30. Deligozoglu D, Kasap‐Demir B, Alparslan C, et al. Can we use copeptin as a biomarker for masked hypertension or metabolic syndrome in obese children and adolescents? J Pediatr Endocrinol Metab. 2020;33(12):1551‐1561. doi:10.1515/jpem‐2020‐0240
  31. Gor Z, Bezen D, Turkmenoglu Y, Vurgun E, Irdem A, Dursun H. Serum copeptin as a biomarker of hypertension in children with obesity. Pediatr Int. 2022;64(1):e15355. doi:10.1111/ped.15355
  32. Al Nofal A, Hanna C, Lteif AN, et al. Copeptin levels in hospitalized infants and children with suspected vasopressin‐dependent disorders: a case series. J Pediatr Endocrinol Metab. 2023;36(5):492‐499. doi:10.1515/jpem‐2022‐0525
  33. Becetti I, Lauze M, Lee H, Bredella MA, Misra M, Singhal V. Changes in branched‐chain amino acids one year after sleeve gastrectomy in youth with obesity and their association with changes in insulin resistance. Nutrients. 2023;15:3801. doi:10.3390/nu15173801
  34. López López AP, Tuli S, Lauze M, et al. Changes in hepatic fat content by CT 1 year after sleeve gastrectomy in adolescents and young adults with obesity. J Clin Endocrinol Metab. 2023;108(12):e1489‐e1495. doi:10.1210/clinem/dgad390
  35. Nakamura K, Aoyagi T, Hiroyama M, et al. Both V1A and V1B vasopressin receptors deficiency result in impaired glucose tolerance. Eur J Pharmacol. 2009;613(1–3):182‐188. doi:10.1016/j.ejphar.2009.04.008
  36. Hiroyama M, Aoyagi T, Fujiwara Y, et al. Hypermetabolism of fat in V1a vasopressin receptor knockout mice. Mol Endocrinol. 2007;21(1):247‐258. doi:10.1210/me.2006‐0069
  37. Grayson BE, Hakala‐Finch AP, Kekulawala M, et al. Weight loss by calorie restriction versus bariatric surgery differentially regulates the hypothalamo‐pituitary‐adrenocortical axis in male rats. Stress. 2014;17(6):484‐493. doi:10.3109/10253890.2014.967677
  38. Hoffman AR, Ceda G, Reisine TD. Corticotropin‐releasing factor desensitization of adrenocorticotropic hormone release is augmented by arginine vasopressin. J Neurosci. 1985;5(1):234‐242. doi:10.1523/jneurosci.05‐01‐00234.1985
  39. Nakamura K, Velho G, Bouby N. Vasopressin and metabolic disorders: translation from experimental models to clinical use. J Intern Med. 2017;282(4):298‐309. doi:10.1111/joim.12649
  40. Takahashi‐Tezuka M, Kobayashi J, Otabe M, et al. A clinical feature of hyperlipidemia in patients with central diabetes insipidus. Endocr J. 2000;47(5):557‐562. doi:10.1507/endocrj.47.557
  41. Ostrovsky V, Knobler H, Lazar LO, et al. Persistent post‐bariatric‐surgery hypoglycemia: a long‐term follow‐up reassessment. Nutr Metab Cardiovasc Dis. 2023;33(6):1197‐1205. doi:10.1016/j.numecd.2023.02.012
  42. Zweck E, Hepprich M, Donath MY. Predictors of postprandial hypoglycemia after gastric bypass surgery: a retrospective case‐control study. Obes Surg. 2021;31(6):2497‐2502. doi:10.1007/s11695‐021‐05277‐1
  43. Abu‐Basha EA, Yibchok‐Anun S, Hsu WH. Glucose dependency of arginine vasopressin‐induced insulin and glucagon release from the perfused rat pancreas. Metabolism. 2002;51(9):1184‐1190. doi:10.1053/meta.2002.34052
  44. Chang DC, Basolo A, Piaggi P, Votruba SB, Krakoff J. Hydration biomarkers and copeptin: relationship with ad libitum energy intake, energy expenditure, and metabolic fuel selection. Eur J Clin Nutr. 2020;54(1):158‐166.
  45. Chang D, Penesova A, Bunt JC, et al. Water intake, thirst, and copeptin responses to two dehydrating stimuli in lean men and men with obesity. Obesity. 2022;30(9):1806‐1817.

Grants

  1. K23DK110419/NIDDK NIH HHS
  2. R01 DK103946/NIDDK NIH HHS
  3. K24DK109940/NIDDK NIH HHS
  4. 1S10RR023405-01/NIDDK NIH HHS
  5. 1UL1TR002541-01/NIDDK NIH HHS
  6. 1UL1TR001102/NIDDK NIH HHS
  7. K24MH120568/NIDDK NIH HHS
  8. R01DK103946/NIDDK NIH HHS
  9. P30DK057521/NIDDK NIH HHS
  10. K24HD071843/NIDDK NIH HHS

Word Cloud

Created with Highcharts 10.0.0MBScopeptinmetabolicchangesREEmayNSHbA1cfollowingbariatricsurgeryVasopressinbodycompositionvasopressinBMIinsulinresistancestudymeanHOMA-IRp = 0ps ≤ 0036correlatednegativelygroupfalsediscoveryrate-adjustedOBJECTIVE:MechanismsunderlyingimprovementprovideinsightnoveltherapiesimprovesprotectshypoglycemiaAssociationsstablecleavageproductsuggestadaptiveincreasecounteractdisruptionknowledgeinvestigatedhumansstudy'saiminvestigateassociationsparametersMETHODS:12-monthlongitudinal64youth78%femaleage187 [SD28] yobesity456 [SD68] kg/mundergoingn = 34nonsurgicallifestylemanagementn = 30FastinghemoglobinA1chomeostaticmodelassessmentrestingenergyexpenditureassessedRESULTS:12 monthsincreasedtime-by-treatment017whereasadipositydecreasedCopeptinpercentagefatmassrho ≤ -029025wholepositivelyrho ≥ 041p= 005rho = -055CONCLUSIONS:IncreasesweightlosscomparedassociatedlowerhigherHbA1c/HOMA-IRvaluescontributeMBS-relatedmodificationsIncreasedreflectvasopressin-related

Similar Articles

Cited By