Relevance theory for mapping cognitive biases in fact-checking: an argumentative approach.

Mariavittoria Masotina, Elena Musi, Simeon Yates
Author Information
  1. Mariavittoria Masotina: Department of Communication and Media, University of Liverpool, Liverpool, United Kingdom.
  2. Elena Musi: Department of Communication and Media, University of Liverpool, Liverpool, United Kingdom.
  3. Simeon Yates: Department of Communication and Media, University of Liverpool, Liverpool, United Kingdom.

Abstract

In the fast-paced, densely populated information landscape shaped by digitization, distinguishing information from misinformation is critical. Fact-checkers are effective in fighting fake news but face challenges such as cognitive overload and time pressure, which increase susceptibility to cognitive biases. Establishing standards to mitigate these biases can improve the quality of fact-checks, bolster audience trust, and protect against reputation attacks from disinformation actors. While previous research has focused on audience biases, we propose a novel approach grounded on relevance theory and the argumentum model of topics to identify (i) the biases intervening in the fact-checking process, (ii) their triggers, and (iii) at what level of reasoning they act. We showcase the predictive power of our approach through a multimethod case study involving a semi-automatic literature review, a fact-checking simulation with 12 news practitioners, and an online survey involving 40 journalists and fact-checkers. The study highlights the distinction between biases triggered by relevance by effort and effect, offering a taxonomy of cognitive biases and a method to map them within decision-making processes. These insights can inform trainings to enhance fact-checkers' critical thinking skills, improving the quality and trustworthiness of fact-checking practices.

Keywords

References

  1. Front Psychol. 2015 Jul 02;6:888 [PMID: 26191014]
  2. Proc Natl Acad Sci U S A. 2021 Sep 14;118(37): [PMID: 34507996]
  3. J Pers Soc Psychol. 1969 Nov;13(3):269-77 [PMID: 5352845]
  4. Curr Opin Psychol. 2020 Feb;31:105-109 [PMID: 31590106]
  5. Pers Soc Psychol Bull. 2020 Mar;46(3):439-453 [PMID: 31282841]
  6. Front Psychol. 2018 Aug 13;9:1292 [PMID: 30150948]
  7. Appetite. 2024 May 01;196:107285 [PMID: 38423301]
  8. J Exp Psychol Appl. 2012 Sep;18(3):314-30 [PMID: 22564084]
  9. EFSA J. 2019 Jul 08;17(Suppl 1):e170720 [PMID: 32626457]
  10. Science. 1974 Sep 27;185(4157):1124-31 [PMID: 17835457]
  11. Psychon Bull Rev. 2016 Dec;23(6):1825-1831 [PMID: 27084778]
  12. Front Psychol. 2022 Feb 08;13:794135 [PMID: 35211062]
  13. IEEE Trans Vis Comput Graph. 2020 Feb;26(2):1413-1432 [PMID: 30281459]
  14. Value Health. 2016 Mar-Apr;19(2):202-9 [PMID: 27021754]
  15. J Exp Psychol Hum Learn. 1978 Nov;4(6):579-81 [PMID: 731196]
  16. Appl Cogn Psychol. 2021 Mar-Apr;35(2):486-496 [PMID: 33362344]
  17. Cortex. 2024 Feb;171:465-480 [PMID: 38141571]
  18. Psychol Sci. 2006 Apr;17(4):311-8 [PMID: 16623688]
  19. Front Psychol. 2022 Jan 04;12:802439 [PMID: 35058862]
  20. J Exp Psychol Learn Mem Cogn. 2007 May;33(3):570-85 [PMID: 17470006]
  21. Hum Factors. 2018 Dec;60(8):1081-1094 [PMID: 30376429]

Word Cloud

Created with Highcharts 10.0.0biasescognitivefact-checkingapproachrelevancetheoryinformationmisinformationcriticalnewscanqualityaudiencedisinformationargumentummodeltopicsstudyinvolvingfast-paceddenselypopulatedlandscapeshapeddigitizationdistinguishingFact-checkerseffectivefightingfakefacechallengesoverloadtimepressureincreasesusceptibilityEstablishingstandardsmitigateimprovefact-checksbolstertrustprotectreputationattacksactorspreviousresearchfocusedproposenovelgroundedidentifyinterveningprocessiitriggersiiilevelreasoningactshowcasepredictivepowermultimethodcasesemi-automaticliteraturereviewsimulation12practitionersonlinesurvey40journalistsfact-checkershighlightsdistinctiontriggeredefforteffectofferingtaxonomymethodmapwithindecision-makingprocessesinsightsinformtrainingsenhancefact-checkers'thinkingskillsimprovingtrustworthinesspracticesRelevancemappingfact-checking:argumentativebias

Similar Articles

Cited By

No available data.