Directed Cyclic Graph for Causal Discovery from Multivariate Functional Data.

Saptarshi Roy, Raymond K W Wong, Yang Ni
Author Information
  1. Saptarshi Roy: Department of Statistics Texas A&M University College Station, TX 77843.
  2. Raymond K W Wong: Department of Statistics Texas A&M University College Station, TX 77843.
  3. Yang Ni: Department of Statistics Texas A&M University College Station, TX 77843.

Abstract

Discovering causal relationship using multivariate functional data has received a significant amount of attention very recently. In this article, we introduce a functional linear structural equation model for causal structure learning when the underlying graph involving the multivariate functions may have cycles. To enhance interpretability, our model involves a low-dimensional causal embedded space such that all the relevant causal information in the multivariate functional data is preserved in this lower-dimensional subspace. We prove that the proposed model is causally identifiable under standard assumptions that are often made in the causal discovery literature. To carry out inference of our model, we develop a fully Bayesian framework with suitable prior specifications and uncertainty quantification through posterior summaries. We illustrate the superior performance of our method over existing methods in terms of causal graph estimation through extensive simulation studies. We also demonstrate the proposed method using a brain EEG dataset.

References

  1. Alcohol Clin Exp Res. 2006 Dec;30(12):1986-91 [PMID: 17117963]
  2. Biometrika. 2020 Sep;107(3):745-752 [PMID: 32831355]
  3. J R Stat Soc Series B Stat Methodol. 2022 Apr;84(2):600-629 [PMID: 35450387]
  4. Brain Connect. 2011;1(1):13-36 [PMID: 22432952]
  5. Biometrika. 2011 Jun;98(2):291-306 [PMID: 23049129]
  6. Acta Psychiatr Scand. 2003 Jul;108(1):51-60 [PMID: 12807377]
  7. Neurosci Biobehav Rev. 2007;31(3):377-95 [PMID: 17145079]
  8. Neural Netw. 1999 Apr;12(3):429-439 [PMID: 12662686]
  9. Biometrics. 2023 Dec;79(4):3279-3293 [PMID: 37635676]
  10. Biometrika. 2016 Jun;103(2):377-396 [PMID: 27279664]
  11. Appl Inform (Berl). 2016;3:3 [PMID: 27195202]
  12. Brain Res Bull. 1995;38(6):531-8 [PMID: 8590074]
  13. J Am Stat Assoc. 2019;114(525):344-357 [PMID: 31057192]
  14. Science. 2008 Oct 17;322(5900):390-5 [PMID: 18927383]
  15. Cereb Cortex. 2014 Jan;24(1):17-36 [PMID: 23010748]

Grants

  1. R01 GM148974/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0causalmodelmultivariatefunctionalusingdatagraphproposedmethodDiscoveringrelationshipreceivedsignificantamountattentionrecentlyarticleintroducelinearstructuralequationstructurelearningunderlyinginvolvingfunctionsmaycyclesenhanceinterpretabilityinvolveslow-dimensionalembeddedspacerelevantinformationpreservedlower-dimensionalsubspaceprovecausallyidentifiablestandardassumptionsoftenmadediscoveryliteraturecarryinferencedevelopfullyBayesianframeworksuitablepriorspecificationsuncertaintyquantificationposteriorsummariesillustratesuperiorperformanceexistingmethodstermsestimationextensivesimulationstudiesalsodemonstratebrainEEGdatasetDirectedCyclicGraphCausalDiscoveryMultivariateFunctionalData

Similar Articles

Cited By