An intracellular bacterial pathogen triggers RIG-I/MDA5-dependent necroptosis.

Hang Xu, Huili Li, Boguang Sun, Li Sun
Author Information
  1. Hang Xu: CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
  2. Huili Li: CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
  3. Boguang Sun: CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
  4. Li Sun: CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.

Abstract

RIG-I and MDA5 are members of RIG-I-like receptors (RLRs) that detect viral RNA within the cytoplasm and subsequently initiate antiviral immune responses. necroptosis is a form of programmed cell death (PCD) executed by mixed lineage kinase domain-like (MLKL), which, upon phosphorylation by receptor-interacting protein kinase 3 (RIPK3), causes necrotic cell death. To date, no link between RLRs and necroptosis has been observed during bacterial infection. is a zoonotic bacterial pathogen that can thrive in host macrophages. In a previous study, we identified RIG-I and MDA5 as two hub factors of RAW264.7 cells responsive to infection. The present study aimed to determine the specific form of cell death triggered by and explore the association between RIG-I/MDA5 and PCD in the context of bacterial infection. Our results showed that infection induced RIPK3-MLKL-mediated necroptosis, rather than pyroptosis or apoptosis, in RAW264.7 cells. Meanwhile, promoted RIG-I/MDA5 production and activated the RIG-I/MDA5 pathways that led to IRF3 phosphorylation, IFN-�� secretion, and interferon-stimulated gene (ISG) and cytokine expression. Both RIG-I and MDA5 were essential for -triggered necroptosis and required for effective inhibition of intracellular bacterial replication. Furthermore, the regulatory effect of RIG-I/MDA5 on necroptosis was not affected by type I IFN or TNF-�� signaling blockage. Together these results revealed that necroptosis could be triggered by intracellular bacterial infection through the RIG-I/MDA5 pathways, and that there existed intricate interplays between PCD and RLRs induced by bacterial pathogen.

Keywords

References

  1. STAR Protoc. 2023 Dec 15;4(4):102708 [PMID: 37948183]
  2. Cell Host Microbe. 2017 Jan 11;21(1):47-58 [PMID: 28081443]
  3. mBio. 2014 Apr 01;5(2):e01006-14 [PMID: 24692634]
  4. Cell Mol Immunol. 2021 May;18(5):1106-1121 [PMID: 33785842]
  5. Front Cell Infect Microbiol. 2016 Jul 14;6:76 [PMID: 27471679]
  6. Cell Death Differ. 2022 Sep;29(9):1804-1815 [PMID: 35264780]
  7. Front Cell Infect Microbiol. 2017 Sep 06;7:400 [PMID: 28932708]
  8. Microorganisms. 2023 Dec 20;12(1): [PMID: 38276180]
  9. Infect Immun. 2012 Aug;80(8):2948-55 [PMID: 22585967]
  10. Nat Rev Mol Cell Biol. 2024 May;25(5):379-395 [PMID: 38110635]
  11. Microbes Infect. 2012 Jan;14(1):26-34 [PMID: 21924375]
  12. Int J Mol Sci. 2019 Nov 15;20(22): [PMID: 31731575]
  13. Immunol Rev. 2009 Jan;227(1):54-65 [PMID: 19120475]
  14. PLoS One. 2012;7(9):e45070 [PMID: 23024793]
  15. Cell. 2005 Sep 9;122(5):669-82 [PMID: 16125763]
  16. Front Immunol. 2022 Sep 15;13:1010948 [PMID: 36189244]
  17. Annu Rev Immunol. 2018 Apr 26;36:667-694 [PMID: 29677479]
  18. Cell Microbiol. 2020 Jul;22(7):e13193 [PMID: 32068939]
  19. Trends Immunol. 2016 Aug;37(8):535-545 [PMID: 27424290]
  20. Front Immunol. 2024 Jan 16;15:1348866 [PMID: 38292869]
  21. Exp Mol Med. 2021 Jun;53(6):1007-1017 [PMID: 34075202]
  22. Vet Microbiol. 2015 Jun 12;177(3-4):332-40 [PMID: 25899393]
  23. Int J Biol Macromol. 2024 Nov;279(Pt 3):135265 [PMID: 39233177]
  24. EMBO J. 2022 May 16;41(10):e109782 [PMID: 35437807]
  25. PLoS One. 2013 Apr 30;8(4):e62872 [PMID: 23653683]
  26. EMBO J. 2012 Nov 5;31(21):4153-64 [PMID: 23064150]
  27. Immunol Rev. 2021 Nov;304(1):154-168 [PMID: 34514601]
  28. Cell Death Dis. 2022 Jul 22;13(7):637 [PMID: 35869043]
  29. Microbiology (Reading). 2008 Jul;154(Pt 7):2060-2069 [PMID: 18599834]
  30. N Engl J Med. 2014 Jan 30;370(5):455-65 [PMID: 24476434]
  31. Cell Death Differ. 2015 Feb;22(2):225-36 [PMID: 25146926]
  32. JCI Insight. 2023 Oct 23;8(20): [PMID: 37725440]
  33. iScience. 2019 Oct 25;20:310-323 [PMID: 31605945]
  34. Cell Death Differ. 2017 Apr;24(4):615-625 [PMID: 28060376]
  35. Front Microbiol. 2021 Mar 11;12:643498 [PMID: 33776977]
  36. Cell Mol Life Sci. 2016 Jun;73(11-12):2177-81 [PMID: 27066893]
  37. PLoS Pathog. 2017 Apr 14;13(4):e1006326 [PMID: 28410401]
  38. Front Immunol. 2019 Jul 17;10:1586 [PMID: 31379819]
  39. Int J Mol Sci. 2022 Oct 22;23(21): [PMID: 36361512]
  40. Cell Death Dis. 2022 May 24;13(5):491 [PMID: 35610210]
  41. Cell Mol Life Sci. 2016 Jun;73(11-12):2369-78 [PMID: 27048818]
  42. Immunity. 2011 May 27;34(5):680-92 [PMID: 21616437]

Word Cloud

Created with Highcharts 10.0.0bacterialnecroptosisinfectionRIG-I/MDA5RIG-IMDA5RLRscelldeathPCDpathogenintracellularNecroptosisformkinasephosphorylationstudyRAW2647cellstriggeredresultsinducedpathwaysmembersRIG-I-likereceptorsdetectviralRNAwithincytoplasmsubsequentlyinitiateantiviralimmuneresponsesprogrammedexecutedmixedlineagedomain-likeMLKLuponreceptor-interactingprotein3RIPK3causesnecroticdatelinkobservedzoonoticcanthrivehostmacrophagespreviousidentifiedtwohubfactorsresponsivepresentaimeddeterminespecificexploreassociationcontextshowedRIPK3-MLKL-mediatedratherpyroptosisapoptosisMeanwhilepromotedproductionactivatedledIRF3IFN-��secretioninterferon-stimulatedgeneISGcytokineexpressionessential-triggeredrequiredeffectiveinhibitionreplicationFurthermoreregulatoryeffectaffectedtypeIFNTNF-��signalingblockageTogetherrevealedexistedintricateinterplaystriggersRIG-I/MDA5-dependentEdwardsiellatardaInfection

Similar Articles

Cited By

No available data.