BACKGROUND: SAP2 is closely associated with the pathogenicity and drug resistance of Candida albicans (C. albicans). Our study aimed to construct C. albicans with SAP2 overexpression (pRB895-SAP2-SC5314) to explore the influence of SAP2 on the adhesion of C. albicans and predict the interaction between magnolol and Sap2 by molecular docking. METHODS: The recombinant plasmid pRB895-SAP2 with high SAP2 expression was prepared using a plasmid extraction kit and transformed into C. albicans strain SC5314 using an improved lithium acetate conversion method to construct PRB895-SAP2-SC5314. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to detect the expression of adhesion-related genes in the different strains. Molecular docking and visual analysis of magnolol and Sap2 were performed using the CB-DOCK2 platform. RESULTS: Compared with the control SC5341 and SC5341 transfected with pRB895, SAP2 expression was significantly higher in the pRB895-SAP2-SC5314 strain (p < 0.05). Based on the sequencing and mapping results, the pRB895-SAP2-SC5314 strain was successfully prepared. SAP2 overexpression significantly downregulated ALS1 expression (p < 0.05), whereas ALS3, TEC1, HOG1, PHR1, and TUP1 expression was downregulated in C. albicans (p < 0.05). The optimal docking result for magnolol and Sap2 protein was -8.1 kcal/mol of vina score, which was considered good docking. CONCLUSIONS: SAP2 overexpression may strengthen the adhesion and pathogenicity of C. albicans, and magnolol may act as an Sap2 inhibitor that affects the adhesion of C. albicans.
A. Soriano, P. M. Honore, P. Puerta‐Alcalde, et al., “Invasive Candidiasis: Current Clinical Challenges and Unmet Needs in Adult Populations,” Journal of Antimicrobial Chemotherapy 78, no. 7 (2023): 1569–1585, https://doi.org/10.1093/jac/dkad139.
M. Volkova, A. Atamas, A. Tsarenko, A. Rogachev, and A. Guskov, “Cation Transporters of Candida albicans‐New Targets to Fight Candidiasis?,” Biomolecules 11, no. 4 (2021): 584, https://doi.org/10.3390/biom11040584.
R. M. Wake, P. E. Allebone‐Salt, L. L. H. John, et al., “Optimizing the Treatment of Invasive Candidiasis‐A Case for Combination Therapy,” Open Forum Infectious Diseases 11, no. 6 (2024): ofae072, https://doi.org/10.1093/ofid/ofae072.
A. T. Coste, A. Kritikos, J. Li, et al., “Emerging Echinocandin‐Resistant Candida Albicans and Glabrata in Switzerland,” Infection 48, no. 5 (2020): 761–766, https://doi.org/10.1007/s15010‐020‐01475‐8.
S. Mogavero and B. Hube, “Candida albicans Interaction with Oral Epithelial Cells: Adhesion, Invasion, and Damage Assays,” Methods in Molecular Biology 2260 (2021): 133–143, https://doi.org/10.1007/978‐1‐0716‐1182‐1_9.
E. Garbe, N. Thielemann, S. Hohner, et al., “Functional Analysis of the Candida albicans ECE1 Promoter,” Microbiology Spectrum 11, no. 2 (2023): e0025323, https://doi.org/10.1128/spectrum.00253‐23.
P. S. Bonfim‐Mendonça, F. K. Tobaldini‐Valério, I. R. Capoci, et al., “Different Expression Levels of ALS and SAP Genes Contribute to Recurrent Vulvovaginal Candidiasis by Candida albicans,” Future Microbiology 16 (2021): 211–219, https://doi.org/10.2217/fmb‐2020‐0059.
J. S. Kim, K. T. Lee, and Y. S. Bahn, “Secreted Aspartyl Protease 3 Regulated by the Ras/cAMP/PKA Pathway Promotes the Virulence of Candida Auris,” Frontiers in Cellular and Infection Microbiology 13 (2023): 1257897, https://doi.org/10.3389/fcimb.2023.1257897.
L. Lin, M. Wang, J. Zeng, et al., “Sequence Variation of Candida albicans Sap2 Enhances Fungal Pathogenicity via Complement Evasion and Macrophage M2‐Like Phenotype Induction,” Advanced Science (Weinheim, Baden‐Wurttemberg, Germany) 10, no. 20 (2023): e2206713, https://doi.org/10.1002/advs.202206713.
W. Feng, J. Yang, Y. Ma, et al., “Correlation Between SAP2 and CAP1 in Clinical Strains of Candida albicans at Planktonic and Biofilm States,” Canadian Journal of Microbiology 68, no. 12 (2022): 722–730, https://doi.org/10.1139/cjm‐2022‐0139.
W. Feng, J. Yang, Y. Ma, et al., “The Effects of Secreted Aspartyl Proteinase Inhibitor Ritonavir on Azoles‐Resistant Strains of Candida albicans as Well as Regulatory Role of SAP2 and ERG11,” Immunity, Inflammation and Disease 9, no. 3 (2021): 667–680, https://doi.org/10.1002/iid3.415.
W. Feng, J. Yang, Y. Ma, et al., “Relationships Between Secreted Aspartyl Proteinase 2 and General Control Nonderepressible 4 Gene in the Candida albicans Resistant to Itraconazole Under Planktonic and Biofilm Conditions,” Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology] 54, no. 2 (2023): 619–627, https://doi.org/10.1007/s42770‐023‐00961‐z.
G. Bras, D. Satala, M. Juszczak, et al., “Secreted Aspartic Proteinases: Key Factors in Candida Infections and Host‐Pathogen Interactions,” International Journal of Molecular Sciences 25, no. 9 (2024): 4775, https://doi.org/10.3390/ijms25094775.
C. Li, Y. Liu, S. Wu, et al., “Targeting Fungal Virulence Factor by Small Molecules: Structure‐Based Discovery of Novel Secreted Aspartic Protease 2 (SAP2) Inhibitors,” European Journal of Medicinal Chemistry 201 (2020): 112515, https://doi.org/10.1016/j.ejmech.2020.112515.
H. Martin, K. Kavanagh, and T. Velasco‐Torrijos, “Targeting Adhesion in Fungal Pathogen Candida albicans,” Future Medicinal Chemistry 13, no. 3 (2021): 313–334, https://doi.org/10.4155/fmc‐2020‐0052.
D. Mao, R. Xu, H. Chen, et al., “Cross‐Talk of Focal Adhesion‐Related Gene Defines Prognosis and the Immune Microenvironment in Gastric Cancer,” Frontiers in Cell and Development Biology 9 (2021): 716461, https://doi.org/10.3389/fcell.2021.716461.
R. Parastan, M. Kargar, K. Solhjoo, and F. Kafilzadeh, “A Synergistic Association Between Adhesion‐Related Genes and Multidrug Resistance Patterns of Staphylococcus aureus Isolates From Different Patients and Healthy Individuals,” Journal of Global Antimicrobial Resistance 22 (2020): 379–385, https://doi.org/10.1016/j.jgar.2020.02.025.
Y. Lin, Y. Li, Y. Zeng, et al., “Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update,” Frontiers in Pharmacology 12 (2021): 632767, https://doi.org/10.3389/fphar.2021.632767.
L. Sun, K. Liao, and D. Wang, “Effects of Magnolol and Honokiol on Adhesion, Yeast‐Hyphal Transition, and Formation of Biofilm by Candida albicans,” PLoS One 10, no. 2 (2015): e0117695, https://doi.org/10.1371/journal.pone.0117695.
Y. Liu, X. Yang, J. Gan, S. Chen, Z. X. Xiao, and Y. Cao, “CB‐Dock2: Improved Protein‐Ligand Blind Docking by Integrating Cavity Detection, Docking and Homologous Template Fitting,” Nucleic Acids Research 50, no. W1 (2022): W159, https://doi.org/10.1093/nar/gkac394.
X. Yang, Y. Liu, J. Gan, Z. X. Xiao, and Y. Cao, “FitDock: Protein‐Ligand Docking by Template Fitting,” Briefings in Bioinformatics 23, no. 3 (2022): bbac087, https://doi.org/10.1093/bib/bbac087.
C. d'Enfert, S. Goyard, S. Rodriguez‐Arnaveilhe, et al., “CandidaDB: A Genome Database for Candida albicans Pathogenomics,” Nucleic Acids Research 33 (2005): D353–D357, https://doi.org/10.1093/nar/gki124.
S. Chen, J. Xia, C. Li, L. Zuo, and X. Wei, “The Possible Molecular Mechanisms of Farnesol on the Antifungal Resistance of C. albicans Biofilms: The Regulation of CYR1 and PDE2,” BMC Microbiology 18 (2018): 203, https://doi.org/10.1186/s12866‐018‐1344‐z.
M. Loock, L. B. Antunes, R. T. Heslop, A. A. de Lauri, A. Brito Lira, and I. Cestari, “High‐Efficiency Transformation and Expression of Genomic Libraries in Yeast,” Methods and Protocols 6, no. 5 (2023): 89, https://doi.org/10.3390/mps6050089.
Z. B. Gordon, M. P. M. Soltysiak, C. Leichthammer, et al., “Development of a Transformation Method for Metschnikowia Borealis and Other CUG‐Serine Yeasts,” Genes (Basel) 10, no. 2 (2019): 78, https://doi.org/10.3390/genes10020078.
J. Liu, A. K. Vogel, J. Miao, et al., “Rapid Hypothesis Testing in Candida albicans Clinical Isolates Using a Cloning‐Free, Modular, and Recyclable System for CRISPR‐Cas9 Mediated Mutant and Revertant Construction,” Microbiology Spectrum 10, no. 3 (2022): e0263021, https://doi.org/10.1128/spectrum.02630‐21.
B. Bernardi, Y. Kayacan, M. Akan, and J. Wendland, “Overexpression of RAD51 Enables PCR‐Based Gene Targeting in Lager Yeast,” Microorganisms 7, no. 7 (2019): 192, https://doi.org/10.3390/microorganisms7070192.
S. K. Rai, A. Atwood‐Moore, and H. L. Levin, “High‐Frequency Lithium Acetate Transformation of Schizosaccharomyces Pombe,” Methods in Molecular Biology 1721 (2018): 167–177, https://doi.org/10.1007/978‐1‐4939‐7546‐4_15.
M. Kakolyri, A. Margaritou, and E. Tiligada, “Dimethyl Sulphoxide Modifies Growth and Senescence and Induces the Non‐revertible Petite Phenotype in Yeast,” FEMS Yeast Research 16 (2016): fow008, https://doi.org/10.1093/femsyr/fow008.
M. Rahimzadeh, M. Sadeghizadeh, F. Najafi, S. Arab, and H. Mobasheri, “Impact of Heat Shock Step on Bacterial Transformation Efficiency,” Molecular Biology Research Communications 5, no. 4 (2016): 257–261.
Y. Y. Ling, Z. L. Ling, and R. L. Zhao, “Construction of a Heat‐Resistant Strain of Lentinus Edodes by Fungal Hsp20 Protein Overexpression and Genetic Transformation,” Frontiers in Microbiology 13 (2022): 1009885, https://doi.org/10.3389/fmicb.2022.1009885.
N. O. Ponde, L. Lortal, G. Ramage, J. R. Naglik, and J. P. Richardson, “Candida albicans Biofilms and Polymicrobial Interactions,” Critical Reviews in Microbiology 47, no. 1 (2021): 91–111, https://doi.org/10.1080/1040841x.2020.1843400.
I. U. Macias‐Paz, S. Pérez‐Hernández, A. Tavera‐Tapia, J. P. Luna‐Arias, J. E. Guerra‐Cárdenas, and E. Reyna‐Beltrán, “Candida albicans the Main Opportunistic Pathogenic Fungus in Humans,” Revista Argentina de Microbiología 55, no. 2 (2023): 189–198, https://doi.org/10.1016/j.ram.2022.08.003.
L. Martorano‐Fernandes, J. S. Goodwine, A. P. Ricomini‐Filho, C. J. Nobile, and A. A. del Bel Cury, “Candida albicans Adhesins Als1 and Hwp1 Modulate Interactions With Streptococcus mutans,” Microorganisms 11, no. 6 (2023): 1391, https://doi.org/10.3390/microorganisms11061391.
G. Guan, L. Tao, C. Li, et al., “Glucose Depletion Enables Candida albicans Mating Independently of the Epigenetic White‐Opaque Switch,” Nature Communications 14, no. 1 (2023): 2067, https://doi.org/10.1038/s41467‐023‐37755‐8.
I. Correia, D. Prieto, E. Román, et al., “Cooperative Role of MAPK Pathways in the Interaction of Candida albicans With the Host Epithelium,” Microorganisms 8, no. 1 (2019): 38, https://doi.org/10.3390/microorganisms8010048.
E. Román, I. Correia, D. Prieto, R. Alonso, and J. Pla, “The HOG MAPK Pathway in Candida albicans: More Than an Osmosensing Pathway,” International Microbiology: The Official Journal of the Spanish Society for Microbiology 23, no. 1 (2020): 23–29, https://doi.org/10.1007/s10123‐019‐00069‐1.
J. Calderon, M. Zavrel, E. Ragni, W. A. Fonzi, S. Rupp, and L. Popolo, “PHR1, a pH‐Regulated Gene of Candida albicans Encoding a Glucan‐Remodelling Enzyme, is Required for Adhesion and Invasion,” Microbiology (Reading, England) 156, no. Pt 8 (2010): 2484–2494, https://doi.org/10.1099/mic.0.038000‐0.
L. Jiang, H. Xu, Y. Gu, and L. Wei, “A Glycosylated Phr1 Protein is Induced by Calcium Stress and Its Expression is Positively Controlled by the Calcium/Calcineurin Signaling Transcription Factor Crz1 in Candida albicans,” Cell Communication and Signaling: CCS 21, no. 1 (2023): 237, https://doi.org/10.1186/s12964‐023‐01224‐y.
S. Ruben, E. Garbe, S. Mogavero, et al., “Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence‐Associated Genes in Candida albicans,” MBio 11, no. 2 (2020): e00206‐20, https://doi.org/10.1128/mBio.00206‐20.
H. Qiao, Z. Tengfei, Z. Wenting, et al., “Mechanistic Insights of Magnolol Antimicrobial Activity Against Mycoplasma Using Untargeted Metabolomic Analyses,” Frontiers in Cellular and Infection Microbiology 13 (2023): 1325347, https://doi.org/10.3389/fcimb.2023.1325347.
Y. Xie, H. Hua, and P. Zhou, “Magnolol as a Potent Antifungal Agent Inhibits Candida albicans Virulence Factors via the PKC and Cek1 MAPK Signaling Pathways,” Frontiers in Cellular and Infection Microbiology 12 (2022): 935322, https://doi.org/10.3389/fcimb.2022.935322.
A. A. Al Mousa, M. E. Abouelela, N. S. Al Ghamidi, et al., “Anti‐Staphylococcal, Anti‐Candida, and Free‐Radical Scavenging Potential of Soil Fungal Metabolites: A Study Supported by Phenolic Characterization and Molecular Docking Analysis,” Current Issues in Molecular Biology 46, no. 1 (2023): 221–243, https://doi.org/10.3390/cimb46010016.
M. I. H. El‐Qaliei, S. A. S. Mousa, M. H. Mahross, et al., “Novel (2‐Oxoindolin‐3‐Ylidene)methyl‐1H‐Pyrazole and Their Fused Derivatives: Design, Synthesis, Antimicrobial Evaluation, DFT, Chemical Approach, In Silico ADME and Molecular Docking Studies,” Journal of Molecular Structure 1264 (2022): 133299, https://doi.org/10.1016/j.molstruc.2022.133299.
J. Eberhardt, D. Santos‐Martins, A. F. Tillack, and S. Forli, “AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings,” Journal of Chemical Information and Modeling 61, no. 8 (2021): 3891–3898, https://doi.org/10.1021/acs.jcim.1c00203.
W. Zhu, Y. Li, J. Zhao, Y. Wang, Y. Li, and Y. Wang, “The Mechanism of Triptolide in the Treatment of Connective Tissue Disease‐Related Interstitial Lung Disease Based on Network Pharmacology and Molecular Docking,” Annals of Medicine 54, no. 1 (2022): 541–552, https://doi.org/10.1080/07853890.2022.2034931.
Grants
82072262/General Project of the National Natural Science Foundation of China