Mitigating Antibiotic Resistance: The Utilization of CRISPR Technology in Detection.

Xuejiao Zhang, Zhaojie Huang, Yanxia Zhang, Wen Wang, Zihong Ye, Pei Liang, Kai Sun, Wencheng Kang, Qiao Tang, Xiaoping Yu
Author Information
  1. Xuejiao Zhang: Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China. ORCID
  2. Zhaojie Huang: Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China. ORCID
  3. Yanxia Zhang: Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China.
  4. Wen Wang: Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China.
  5. Zihong Ye: Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China. ORCID
  6. Pei Liang: College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China. ORCID
  7. Kai Sun: Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China. ORCID
  8. Wencheng Kang: Inner Mongolia Institute of Metrology and Testing, Hohhot 010030, China.
  9. Qiao Tang: Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China. ORCID
  10. Xiaoping Yu: Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China.

Abstract

Antibiotics, celebrated as some of the most significant pharmaceutical breakthroughs in medical history, are capable of eliminating or inhibiting bacterial growth, offering a primary defense against a wide array of bacterial infections. However, the rise in antimicrobial resistance (AMR), driven by the widespread use of antibiotics, has evolved into a widespread and ominous threat to global public health. Thus, the creation of efficient methods for detecting resistance genes and antibiotics is imperative for ensuring food safety and safeguarding human health. The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) systems, initially recognized as an adaptive immune defense mechanism in bacteria and archaea, have unveiled their profound potential in sensor detection, transcending their notable gene-editing applications. CRISPR/Cas technology employs Cas enzymes and guides RNA to selectively target and cleave specific DNA or RNA sequences. This review offers an extensive examination of CRISPR/Cas systems, highlighting their unique attributes and applications in antibiotic detection. It outlines the current utilization and progress of the CRISPR/Cas toolkit for identifying both nucleic acid (resistance genes) and non-nucleic acid (antibiotic micromolecules) targets within the field of antibiotic detection. In addition, it examines the current challenges, such as sensitivity and specificity, and future opportunities, including the development of point-of-care diagnostics, providing strategic insights to facilitate the curbing and oversight of antibiotic-resistance proliferation.

Keywords

References

  1. Nature. 2016 Oct 13;538(7624):270-273 [PMID: 27669025]
  2. Lancet Public Health. 2022 Nov;7(11):e897-e913 [PMID: 36244350]
  3. Clin Microbiol Rev. 2015 Jan;28(1):208-36 [PMID: 25567228]
  4. Philos Trans R Soc Lond B Biol Sci. 2016 Nov 5;371(1707): [PMID: 27672148]
  5. Anal Chim Acta. 2023 Apr 22;1251:341014 [PMID: 36925313]
  6. Front Microbiol. 2016 Feb 19;7:173 [PMID: 26925045]
  7. Nature. 2022 Jan;601(7894):658-661 [PMID: 35079149]
  8. J Pharm Biomed Anal. 2023 Feb 5;224:115167 [PMID: 36435082]
  9. Cell Res. 2018 Apr;28(4):491-493 [PMID: 29531313]
  10. J Mol Diagn. 2023 Jul;25(7):428-437 [PMID: 37088139]
  11. RSC Adv. 2018 Feb 2;8(11):5714-5720 [PMID: 35539626]
  12. Forensic Sci Int Genet. 2025 Jan;74:103163 [PMID: 39437497]
  13. Anal Chem. 2022 Mar 22;94(11):4617-4626 [PMID: 35266687]
  14. Cell Discov. 2018 Apr 24;4:20 [PMID: 29707234]
  15. Analyst. 2019 Apr 8;144(8):2755-2764 [PMID: 30869681]
  16. Microbiol Spectr. 2022 Oct 26;10(5):e0188422 [PMID: 36043860]
  17. Science. 2018 Apr 27;360(6387):436-439 [PMID: 29449511]
  18. Nature. 2015 Oct 1;526(7571):55-61 [PMID: 26432244]
  19. Cell. 2015 Oct 22;163(3):759-71 [PMID: 26422227]
  20. Mikrochim Acta. 2022 Sep 26;189(10):394 [PMID: 36155855]
  21. Nucleic Acids Res. 2019 Aug 22;47(14):e83 [PMID: 31114866]
  22. ACS Synth Biol. 2019 Oct 18;8(10):2228-2237 [PMID: 31532637]
  23. Curr Microbiol. 2023 Sep 22;80(11):352 [PMID: 37737960]
  24. Sci Total Environ. 2018 Mar;616-617:453-461 [PMID: 29127799]
  25. Science. 2019 Jan 04;363(6422):88-91 [PMID: 30523077]
  26. Cell. 2016 May 19;165(5):1255-1266 [PMID: 27160350]
  27. Anim Health Res Rev. 2017 Dec;18(2):112-127 [PMID: 29231804]
  28. ACS Synth Biol. 2024 Jul 19;13(7):2166-2176 [PMID: 38866727]
  29. Science. 2018 Nov 16;362(6416):839-842 [PMID: 30337455]
  30. Science. 2016 Aug 05;353(6299):aaf5573 [PMID: 27256883]
  31. PLoS One. 2019 Nov 20;14(11):e0225131 [PMID: 31747398]
  32. Talanta. 2024 Jun 1;273:125950 [PMID: 38521024]
  33. Science. 2018 Apr 27;360(6387):439-444 [PMID: 29449508]
  34. Chem Sci. 2021 Mar 2;12(13):4683-4698 [PMID: 34163728]
  35. Talanta. 2024 Jan 1;266(Pt 2):125057 [PMID: 37562085]
  36. J Hazard Mater. 2023 Feb 5;443(Pt B):130299 [PMID: 36356526]
  37. Anal Chim Acta. 2024 May 22;1304:342562 [PMID: 38637031]
  38. Biosensors (Basel). 2022 Nov 17;12(11): [PMID: 36421156]
  39. Environ Res. 2024 Aug 15;255:119156 [PMID: 38759773]
  40. Elife. 2020 Apr 14;9: [PMID: 32285801]
  41. Nat Protoc. 2019 Oct;14(10):2986-3012 [PMID: 31548639]
  42. Biosensors (Basel). 2024 Apr 16;14(4): [PMID: 38667187]
  43. Biosensors (Basel). 2024 Jan 02;14(1): [PMID: 38248403]
  44. Anal Chem. 2023 Jul 18;95(28):10522-10531 [PMID: 37390127]
  45. Talanta. 2024 Jan 15;267:125208 [PMID: 37717540]
  46. Nat Protoc. 2021 Dec;16(12):5592-5615 [PMID: 34773119]
  47. J Hazard Mater. 2024 Jan 15;462:132793 [PMID: 37856955]
  48. Biosens Bioelectron. 2022 Jan 1;195:113682 [PMID: 34624800]
  49. Sci Total Environ. 2023 Dec 20;905:167068 [PMID: 37714353]
  50. Int J Antimicrob Agents. 2024 Aug;64(2):107206 [PMID: 38754526]
  51. Infect Drug Resist. 2024 Jul 12;17:3001-3010 [PMID: 39045109]
  52. Int J Biol Macromol. 2023 Jul 1;242(Pt 4):125211 [PMID: 37271263]
  53. Environ Pollut. 2009 Nov;157(11):2893-902 [PMID: 19560847]
  54. Biosensors (Basel). 2022 Sep 20;12(10): [PMID: 36290917]
  55. Anal Chim Acta. 2023 Mar 22;1247:340891 [PMID: 36781250]
  56. Drug Resist Updat. 2023 May;68:100948 [PMID: 36780840]
  57. Int J Biol Macromol. 2023 May 31;238:124054 [PMID: 36933595]
  58. Lancet Microbe. 2021 Apr;2(4):e135-e136 [PMID: 33655229]
  59. Nat Commun. 2019 Aug 14;10(1):3672 [PMID: 31413315]
  60. Environ Sci Technol. 2023 Mar 28;57(12):4880-4891 [PMID: 36934344]
  61. Sci Rep. 2016 Dec 01;6:37938 [PMID: 27905467]
  62. Biosens Bioelectron. 2022 Nov 1;215:114559 [PMID: 35917610]
  63. Nat Struct Mol Biol. 2020 Nov;27(11):1069-1076 [PMID: 32895556]
  64. Biosensors (Basel). 2023 Sep 01;13(9): [PMID: 37754101]
  65. Trends Plant Sci. 2019 Dec;24(12):1102-1125 [PMID: 31727474]
  66. Biosensors (Basel). 2023 Aug 26;13(9): [PMID: 37754084]
  67. Biosensors (Basel). 2024 Sep 26;14(10): [PMID: 39451674]
  68. Biosensors (Basel). 2023 May 31;13(6): [PMID: 37366962]
  69. Small. 2023 Oct;19(41):e2303007 [PMID: 37294164]
  70. Trends Microbiol. 2017 Nov;25(11):893-905 [PMID: 28641931]
  71. Nature. 2017 Feb 9;542(7640):237-241 [PMID: 28005056]
  72. Philos Trans R Soc Lond B Biol Sci. 2022 Jan 17;377(1842):20200464 [PMID: 34839714]
  73. Anal Chem. 2021 Feb 2;93(4):2589-2595 [PMID: 33410662]
  74. Expert Opin Drug Discov. 2010 Aug;5(8):779-88 [PMID: 22827799]
  75. Nature. 2024 Feb;626(7997):177-185 [PMID: 38123686]
  76. RNA Biol. 2013 May;10(5):726-37 [PMID: 23563642]
  77. Nat Rev Microbiol. 2020 Feb;18(2):67-83 [PMID: 31857715]
  78. Talanta. 2024 Mar 1;269:125508 [PMID: 38070284]
  79. Commun Med (Lond). 2023 Feb 23;3(1):31 [PMID: 36823379]
  80. Biosensors (Basel). 2023 Jan 29;13(2): [PMID: 36831968]
  81. J Hazard Mater. 2023 Aug 5;455:131561 [PMID: 37167875]
  82. Sci Total Environ. 2023 May 10;872:162279 [PMID: 36801336]
  83. Science. 2014 Jan 3;343(6166):80-4 [PMID: 24336569]
  84. Front Microbiol. 2024 Jan 31;15:1341179 [PMID: 38357344]
  85. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  86. Biosensors (Basel). 2022 Jul 25;12(8): [PMID: 35892459]
  87. Sci Adv. 2021 Jan 27;7(5): [PMID: 33571114]
  88. Science. 2017 Apr 28;356(6336):438-442 [PMID: 28408723]
  89. J Hazard Mater. 2024 Mar 5;465:133247 [PMID: 38141293]
  90. Biosensors (Basel). 2023 Jan 07;13(1): [PMID: 36671946]
  91. Microbiol Spectr. 2023 Aug 17;11(4):e0132923 [PMID: 37466441]
  92. Talanta. 2015 Nov 1;144:686-95 [PMID: 26452878]
  93. Water Res. 2019 Sep 15;161:211-221 [PMID: 31200218]
  94. J Hazard Mater. 2024 Mar 5;465:133368 [PMID: 38163408]
  95. J Infect Dis. 2008 Apr 15;197(8):1079-81 [PMID: 18419525]
  96. Mol Cell. 2015 Nov 5;60(3):385-97 [PMID: 26593719]
  97. Genome Biol. 2019 Jul 1;20(1):132 [PMID: 31262344]
  98. Antibiotics (Basel). 2020 Apr 28;9(5): [PMID: 32353943]
  99. Cell. 2018 Apr 19;173(3):665-676.e14 [PMID: 29551272]
  100. Chem Commun (Camb). 2021 Oct 7;57(80):10423-10426 [PMID: 34549224]
  101. J Environ Manage. 2023 Dec 15;348:119303 [PMID: 37832303]
  102. Talanta. 2024 May 1;271:125702 [PMID: 38271844]
  103. Science. 2018 Apr 27;360(6387):444-448 [PMID: 29700266]
  104. Anal Chem. 2021 Oct 26;93(42):14214-14222 [PMID: 34644046]
  105. Sheng Wu Gong Cheng Xue Bao. 2023 Jan 25;39(1):60-73 [PMID: 36738201]
  106. Chem Commun (Camb). 2020 Mar 25;56(24):3536-3538 [PMID: 32103228]
  107. Environ Int. 2024 Sep;191:108989 [PMID: 39241334]
  108. Infect Dis (Lond). 2016;48(1):18-25 [PMID: 26135711]
  109. Emerg Microbes Infect. 2020 Dec;9(1):1140-1148 [PMID: 32486913]
  110. Nat Commun. 2019 Jun 11;10(1):2544 [PMID: 31186424]
  111. mSphere. 2016 Jun 01;1(3): [PMID: 27303749]

Grants

  1. 2022C02049/the "Pioneer" and "Leading Goose" R&D Program of Zhejiang
  2. 2024SNJF044/Zhejiang Provincial Department of Agriculture and Rural Affairs Project
  3. 2023SNJF066/the Zhejiang Provincial Department of Agriculture and Rural Affairs Project

MeSH Term

CRISPR-Cas Systems
Anti-Bacterial Agents
Humans
Drug Resistance, Microbial
Clustered Regularly Interspaced Short Palindromic Repeats
Gene Editing
Bacteria
Biosensing Techniques
Drug Resistance, Bacterial

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0detectionantibioticacidresistanceCRISPRCRISPR/CastargetsbacterialdefensewidespreadantibioticshealthgenesCassystemsapplicationsRNAcurrentnucleicnon-nucleicAntibioticscelebratedsignificantpharmaceuticalbreakthroughsmedicalhistorycapableeliminatinginhibitinggrowthofferingprimarywidearrayinfectionsHoweverriseantimicrobialAMRdrivenuseevolvedominousthreatglobalpublicThuscreationefficientmethodsdetectingimperativeensuringfoodsafetysafeguardinghumanclusteredregularlyinterspacedshortpalindromicrepeatsCRISPR-associatedproteinsinitiallyrecognizedadaptiveimmunemechanismbacteriaarchaeaunveiledprofoundpotentialsensortranscendingnotablegene-editingtechnologyemploysenzymesguidesselectivelytargetcleavespecificDNAsequencesreviewoffersextensiveexaminationhighlightinguniqueattributesoutlinesutilizationprogresstoolkitidentifyingmicromoleculeswithinfieldadditionexamineschallengessensitivityspecificityfutureopportunitiesincludingdevelopmentpoint-of-carediagnosticsprovidingstrategicinsightsfacilitatecurbingoversightantibiotic-resistanceproliferationMitigatingAntibioticResistance:UtilizationTechnologyDetection

Similar Articles

Cited By

No available data.