Green Fabrication of Silver Nanoparticles, Statistical Process Optimization, Characterization, and Molecular Docking Analysis of Their Antimicrobial Activities onto Cotton Fabrics.

Nada S Shweqa, Noura El-Ahmady El-Naggar, Hala M Abdelmigid, Amal A Alyamani, Naglaa Elshafey, Hadeel El-Shall, Yasmin M Heikal, Hoda M Soliman
Author Information
  1. Nada S Shweqa: Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt. ORCID
  2. Noura El-Ahmady El-Naggar: Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City 21934, Egypt. ORCID
  3. Hala M Abdelmigid: Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia. ORCID
  4. Amal A Alyamani: Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia. ORCID
  5. Naglaa Elshafey: Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt. ORCID
  6. Hadeel El-Shall: Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City 21934, Egypt. ORCID
  7. Yasmin M Heikal: Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt. ORCID
  8. Hoda M Soliman: Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

Abstract

Nanotechnological methods for creating multifunctional fabrics are attracting global interest. The incorporation of nanoparticles in the field of textiles enables the creation of multifunctional textiles exhibiting UV irradiation protection, antimicrobial properties, self-cleaning properties and photocatalytic. Nanomaterials-loaded textiles have many innovative applications in pharmaceuticals, sports, military the textile industry etc. This study details the biosynthesis and characterization of silver nanoparticles (AgNPs) using the aqueous mycelial-free filtrate of . The formation of AgNPs was indicated by a brown color in the extracellular filtrate and confirmed by UV-Vis spectroscopy with a peak at 426 nm. The Box-Behnken design (BBD) is used to optimize the physicochemical parameters affecting AgNPs biosynthesis. The desirability function was employed to theoretically predict the optimal conditions for the biosynthesis of AgNPs, which were subsequently experimentally validated. Through the desirability function, the optimal conditions for the maximum predicted value for the biosynthesized AgNPs (235.72 µg/mL) have been identified as follows: incubation time (58.12 h), initial pH (7.99), AgNO concentration (4.84 mM/mL), and temperature (34.84 °C). Under these conditions, the highest experimental value of AgNPs biosynthesis was 247.53 µg/mL. Model validation confirmed the great accuracy of the model predictions. Scanning electron microscopy (SEM) revealed spherical AgNPs measuring 8.93-19.11 nm, which was confirmed by transmission electron microscopy (TEM). Zeta potential analysis indicated a positive surface charge (+1.69 mV), implying good stability. X-ray diffraction (XRD) confirmed the crystalline nature, while energy-dispersive X-ray spectroscopy (EDX) verified elemental silver (49.61%). FTIR findings indicate the presence of phenols, proteins, alkanes, alkenes, aliphatic and aromatic amines, and alkyl groups which play significant roles in the reduction, capping, and stabilization of AgNPs. Cotton fabrics embedded with AgNPs biosynthesized using the aqueous mycelial-free filtrate of showed strong antimicrobial activity. The disc diffusion method revealed inhibition zones of 15, 12, and 17 mm against (Gram-negative), (Gram-positive), and (yeast), respectively. These fabrics have potential applications in protective clothing, packaging, and medical care. In silico modeling suggested that the predicted compound derived from AgNPs on cotton fabric could inhibit Penicillin-binding proteins (PBPs) and Lanosterol 14-alpha-demethylase (L-14α-DM), with binding energies of -4.7 and -5.2 Kcal/mol, respectively. Pharmacokinetic analysis and sensitizer prediction indicated that this compound merits further investigation.

Keywords

References

  1. Mycobiology. 2012 Mar;40(1):27-34 [PMID: 22783131]
  2. Methods Mol Biol. 2000;132:365-86 [PMID: 10547847]
  3. Front Bioeng Biotechnol. 2019 Oct 22;7:287 [PMID: 31696113]
  4. Sci Rep. 2020 Oct 15;10(1):17439 [PMID: 33060658]
  5. Carbohydr Polym. 2016 Oct 20;151:841-850 [PMID: 27474632]
  6. J Genet Eng Biotechnol. 2023 Nov 21;21(1):127 [PMID: 37985623]
  7. Sci Rep. 2024 Mar 11;14(1):5934 [PMID: 38467843]
  8. Mol Biol Evol. 2021 Jun 25;38(7):3022-3027 [PMID: 33892491]
  9. Curr Microbiol. 2021 Jan;78(1):292-302 [PMID: 33170381]
  10. Front Microbiol. 2024 Jul 31;15:1440065 [PMID: 39149204]
  11. J Phys Chem B. 2006 Aug 24;110(33):16248-53 [PMID: 16913750]
  12. Nanomaterials (Basel). 2016 Apr 15;6(4): [PMID: 28335201]
  13. Sci Rep. 2020 May 14;10(1):7942 [PMID: 32409719]
  14. Front Chem. 2017 Feb 21;5:6 [PMID: 28271059]
  15. Chemosphere. 2020 Mar;243:125430 [PMID: 31995881]
  16. Sci Rep. 2024 Feb 25;14(1):4581 [PMID: 38403677]
  17. Polymers (Basel). 2022 Aug 05;14(15): [PMID: 35956720]
  18. Mar Drugs. 2022 May 28;20(6): [PMID: 35736165]
  19. J Nanobiotechnology. 2005 Jul 13;3:8 [PMID: 16014167]
  20. Antimicrob Agents Chemother. 2002 Aug;46(8):2668-70 [PMID: 12121953]
  21. RSC Adv. 2020 Jan 30;10(9):4969-4983 [PMID: 35498291]
  22. J Glob Antimicrob Resist. 2016 Dec;7:88-92 [PMID: 27689341]
  23. Front Microbiol. 2016 Nov 16;7:1831 [PMID: 27899918]
  24. Sci Rep. 2020 Jun 11;10(1):9491 [PMID: 32528020]
  25. Colloids Surf B Biointerfaces. 2010 Dec 1;81(2):430-3 [PMID: 20708910]
  26. Antibiotics (Basel). 2022 Jun 27;11(7): [PMID: 35884119]
  27. Nanomaterials (Basel). 2021 Aug 21;11(8): [PMID: 34443960]
  28. Nanobiomedicine (Rij). 2021 Feb 16;8:1849543521995310 [PMID: 33643450]
  29. Pharmaceutics. 2023 Feb 04;15(2): [PMID: 36839850]
  30. Microbiol Res. 2001;156(1):1-7 [PMID: 11372645]
  31. J Fungi (Basel). 2021 Jan 20;7(2): [PMID: 33498194]
  32. J Appl Toxicol. 2020 Feb;40(2):300-312 [PMID: 31680285]
  33. Sci Rep. 2017 Sep 7;7(1):10844 [PMID: 28883419]
  34. Front Microbiol. 2023 Apr 17;14:1155622 [PMID: 37180257]
  35. BMC Microbiol. 2016 Sep 20;16:217 [PMID: 27646045]
  36. Molecules. 2023 Sep 04;28(17): [PMID: 37687260]
  37. Biomol Ther (Seoul). 2023 Mar 1;31(2):141-147 [PMID: 36788654]
  38. Front Microbiol. 2019 Mar 26;10:595 [PMID: 30972047]
  39. Sci Rep. 2021 Feb 15;11(1):3842 [PMID: 33589657]
  40. Nature. 2018 Mar 28;555(7698):604-610 [PMID: 29595767]
  41. Front Chem. 2020 Sep 11;8:726 [PMID: 33062633]
  42. Sci Rep. 2018 Aug 20;8(1):12456 [PMID: 30127459]
  43. Biochim Biophys Acta Proteins Proteom. 2020 Mar;1868(3):140206 [PMID: 30851431]
  44. Sci Rep. 2021 Feb 11;11(1):3555 [PMID: 33574404]
  45. Nat Rev Drug Discov. 2024 Feb;23(2):141-155 [PMID: 38066301]
  46. Sci Rep. 2023 Mar 16;13(1):4401 [PMID: 36928367]
  47. Int J Mol Sci. 2022 Jan 04;23(1): [PMID: 35008977]
  48. Biomolecules. 2024 Sep 18;14(9): [PMID: 39334936]
  49. Sci Rep. 2022 Mar 3;12(1):3515 [PMID: 35241695]
  50. Arch Toxicol. 2024 May;98(5):1253-1269 [PMID: 38483583]
  51. BMC Chem. 2023 Jun 29;17(1):67 [PMID: 37386581]
  52. Bioprocess Biosyst Eng. 2014 Feb;37(2):261-7 [PMID: 23771163]
  53. mBio. 2021 Feb 16;12(1): [PMID: 33593978]
  54. Sci Rep. 2018 Jun 12;8(1):8925 [PMID: 29895869]
  55. Colloids Surf B Biointerfaces. 2022 Jan;209(Pt 1):112172 [PMID: 34715596]
  56. Sci Rep. 2020 Aug 20;10(1):14043 [PMID: 32820181]
  57. Chem Sci. 2023 May 17;14(23):6467-6475 [PMID: 37325140]
  58. Sci Rep. 2020 Aug 10;10(1):13479 [PMID: 32778759]
  59. World J Microbiol Biotechnol. 2020 Jun 18;36(7):91 [PMID: 32556667]
  60. Z Naturforsch C J Biosci. 2021 Nov 10;77(5-6):207-218 [PMID: 34761648]
  61. Chem Res Toxicol. 2021 Feb 15;34(2):258-267 [PMID: 32673477]

Grants

  1. TU-DSPP-2024-213/Taif University, Saudi Arabia

Word Cloud

Created with Highcharts 10.0.0AgNPsfabricsbiosynthesisconfirmednanoparticlestextilesantimicrobialsilverfiltrateindicatedconditionsanalysismultifunctionalpropertiesapplicationscharacterizationusingaqueousmycelial-freespectroscopynmdesirabilityfunctionoptimalpredictedvaluebiosynthesizedµg/mL12784electronmicroscopyrevealedpotentialX-rayproteinsCottonactivityrespectivelycompoundcottonNanotechnologicalmethodscreatingattractingglobalinterestincorporationfieldenablescreationexhibitingUVirradiationprotectionself-cleaningphotocatalyticNanomaterials-loadedmanyinnovativepharmaceuticalssportsmilitarytextileindustryetcstudydetailsformationbrowncolorextracellularUV-Vispeak426Box-BehnkendesignBBDusedoptimizephysicochemicalparametersaffectingemployedtheoreticallypredictsubsequentlyexperimentallyvalidatedmaximum23572identifiedfollows:incubationtime58hinitialpH99AgNOconcentration4mM/mLtemperature34°Chighestexperimental24753ModelvalidationgreataccuracymodelpredictionsScanningSEMsphericalmeasuring893-1911transmissionTEMZetapositivesurfacecharge+169mVimplyinggoodstabilitydiffractionXRDcrystallinenatureenergy-dispersiveEDXverifiedelemental4961%FTIRfindingsindicatepresencephenolsalkanesalkenesaliphaticaromaticaminesalkylgroupsplaysignificantrolesreductioncappingstabilizationembeddedshowedstrongdiscdiffusionmethodinhibitionzones1517mmGram-negativeGram-positiveyeastprotectiveclothingpackagingmedicalcaresilicomodelingsuggestedderivedfabricinhibitPenicillin-bindingPBPsLanosterol14-alpha-demethylaseL-14α-DMbindingenergies-4-52Kcal/molPharmacokineticsensitizerpredictionmeritsinvestigationGreenFabricationSilverNanoparticlesStatisticalProcessOptimizationCharacterizationMolecularDockingAnalysisAntimicrobialActivitiesontoFabricsAspergillusflavusgreensynthesismoleculardockingstatisticaloptimization

Similar Articles

Cited By