Constructing Dynamical Symmetries for Quantum Computing: Applications to Coherent Dynamics in Coupled Quantum Dots.

James R Hamilton, Raphael D Levine, Francoise Remacle
Author Information
  1. James R Hamilton: Theoretical Physical Chemistry, UR MOLSYS, University of Liege, B4000 Li��ge, Belgium.
  2. Raphael D Levine: Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
  3. Francoise Remacle: Theoretical Physical Chemistry, UR MOLSYS, University of Liege, B4000 Li��ge, Belgium. ORCID

Abstract

Dynamical symmetries, time-dependent operators that almost commute with the Hamiltonian, extend the role of ordinary symmetries. Motivated by progress in quantum technologies, we illustrate a practical algebraic approach to computing such time-dependent operators. Explicitly we expand them as a linear combination of time-independent operators with time-dependent coefficients. There are possible applications to the dynamics of systems of coupled coherent two-state systems, such as qubits, pumped by optical excitation and other addressing inputs. Thereby, the interaction of the system with the excitation is bilinear in the coherence between the two states and in the strength of the time-dependent excitation. The total Hamiltonian is a sum of such bilinear terms and of terms linear in the populations. The terms in the Hamiltonian form a basis for Lie algebra, which can be represented as coupled individual two-state systems, each using the population and the coherence between two states. Using the factorization approach of Wei and Norman, we construct a unitary quantum mechanical evolution operator that is a factored contribution of individual two-state systems. By that one can accurately propagate both the wave function and the density matrix with special relevance to quantum computing based on qubit architecture. Explicit examples are derived for the electronic dynamics in coupled semi-conducting nanoparticles that can be used as hardware for quantum technologies.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):11940-11946 [PMID: 32409603]
  2. Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21022-21030 [PMID: 32817545]
  3. ACS Nano. 2012 Feb 28;6(2):1239-50 [PMID: 22214339]
  4. Nanomaterials (Basel). 2023 Jul 18;13(14): [PMID: 37513107]
  5. Nano Lett. 2012 Feb 8;12(2):880-6 [PMID: 22201519]
  6. Nat Commun. 2015 Jan 19;6:6086 [PMID: 25597912]
  7. Phys Rev Lett. 1987 Nov 16;59(20):2243-2246 [PMID: 10035493]
  8. Phys Rev A Gen Phys. 1987 Feb 15;35(4):1582-1589 [PMID: 9898316]
  9. Chem Rev. 2021 Mar 10;121(5):3186-3233 [PMID: 33372773]
  10. Phys Rev B Condens Matter. 1996 Aug 15;54(7):4843-4856 [PMID: 9986445]
  11. J Chem Phys. 2014 Feb 28;140(8):084701 [PMID: 24588185]
  12. Phys Rev Lett. 2021 Mar 5;126(9):090601 [PMID: 33750178]
  13. Acc Chem Res. 2009 Dec 21;42(12):2005-16 [PMID: 19888715]
  14. ACS Nano. 2017 Dec 26;11(12):12174-12184 [PMID: 29178801]
  15. Acc Chem Res. 2009 Aug 18;42(8):1037-46 [PMID: 19425542]
  16. Nano Converg. 2024 Mar 18;11(1):11 [PMID: 38498068]
  17. Nano Lett. 2015 Mar 11;15(3):2086-91 [PMID: 25639836]
  18. J Phys Chem Lett. 2020 Sep 3;11(17):6990-6995 [PMID: 32787197]
  19. Acc Chem Res. 2021 Mar 2;54(5):1178-1188 [PMID: 33459013]
  20. Nano Lett. 2010 Aug 11;10(8):2849-56 [PMID: 20698598]
  21. Nano Lett. 2018 May 9;18(5):2999-3006 [PMID: 29589448]
  22. Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2220069120 [PMID: 36897984]
  23. J Phys Chem A. 2011 Apr 28;115(16):3797-806 [PMID: 21070015]
  24. J Phys Chem C Nanomater Interfaces. 2021 Jun 24;125(24):13096-13108 [PMID: 34276867]
  25. Phys Rev B Condens Matter. 1996 Jun 15;53(24):16338-16346 [PMID: 9983472]
  26. J Phys Chem Lett. 2014 Jan 2;5(1):196-204 [PMID: 24719679]
  27. J Chem Phys. 2021 Jan 7;154(1):014301 [PMID: 33412883]
  28. J Phys Chem B. 2018 Apr 5;122(13):3384-3395 [PMID: 29099600]

Grants

  1. T0205.20/Fund for Scientific Research

Word Cloud

Created with Highcharts 10.0.0quantumtime-dependentsystemsoperatorsHamiltoniancomputingdynamicscoupledtwo-stateexcitationtermscanDynamicalsymmetriestechnologiesapproachlinearcoherentbilinearcoherencetwostatesLiealgebraindividualQuantumalmostcommuteextendroleordinaryMotivatedprogressillustratepracticalalgebraicExplicitlyexpandcombinationtime-independentcoefficientspossibleapplicationsqubitspumpedopticaladdressinginputsTherebyinteractionsystemstrengthtotalsumpopulationsformbasisrepresentedusingpopulationUsingfactorizationWeiNormanconstructunitarymechanicalevolutionoperatorfactoredcontributiononeaccuratelypropagatewavefunctiondensitymatrixspecialrelevancebasedqubitarchitectureExplicitexamplesderivedelectronicsemi-conductingnanoparticlesusedhardwareConstructingSymmetriesComputing:ApplicationsCoherentDynamicsCoupledDotsCdSenanoparticledimersobservables

Similar Articles

Cited By

No available data.