Oral microbiota as a biomarker for predicting the risk of malignancy in indeterminate pulmonary nodules: a prospective multicenter study.

Qiong Ma, Chun-Xia Huang, Jia-Wei He, Xiao Zeng, Yu-Li Qu, Hong-Xia Xiang, Yang Zhong, Mao Lei, Ru-Yi Zheng, Jun-Jie Xiao, Yu-Ling Jiang, Shi-Yan Tan, Ping Xiao, Xiang Zhuang, Li-Ting You, Xi Fu, Yi-Feng Ren, Chuan Zheng, Feng-Ming You
Author Information
  1. Qiong Ma: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  2. Chun-Xia Huang: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  3. Jia-Wei He: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  4. Xiao Zeng: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  5. Yu-Li Qu: College of Artificial Intelligence, Xi'an Jiaotong University, Xian, Shanxi Province, China.
  6. Hong-Xia Xiang: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  7. Yang Zhong: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  8. Mao Lei: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  9. Ru-Yi Zheng: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  10. Jun-Jie Xiao: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  11. Yu-Ling Jiang: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  12. Shi-Yan Tan: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  13. Ping Xiao: Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China.
  14. Xiang Zhuang: Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China.
  15. Li-Ting You: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  16. Xi Fu: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  17. Yi-Feng Ren: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  18. Chuan Zheng: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
  19. Feng-Ming You: Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.

Abstract

BACKGROUND: Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer (LC) interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN.
MATERIALS AND METHODS: Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals. Following up, the IPNs were diagnosed as benign (BPN) or malignant pulmonary nodules (MPN). Through 16S rRNA sequencing, bioinformatics analysis, fluorescence in situ hybridization (FISH), and seven machine learning algorithms (support vector machine, logistic regression, na��ve Bayes, multi-layer perceptron, random forest, gradient-boosting decision tree, and LightGBM), we revealed the oral microbiota characteristics at different stages of HC-BPN-MPN, identified the sample types with the highest predictive potential, constructed and evaluated the optimal MPN prediction model for predictive efficacy, and determined microbial biomarkers. Additionally, based on the SHAP algorithm interpretation of the ML model's output, we have developed a visualized IPN risk prediction system on the web.
RESULTS: Saliva, tongue coating, and throat swab microbiotas exhibit site-specific characteristics, with saliva microbiota being the optimal sample type for disease prediction. The saliva-LightGBM model demonstrated the best predictive performance (AUC = 0.887, 95%CI: 0.865-0.918), and identified Actinomyces, Rothia, Streptococcus, Prevotella, Porphyromonas , and Veillonella as biomarkers for predicting MPN. FISH was used to confirm the presence of a microbiota within tumors, and external data from a LC cohort, along with three non-IPN disease cohorts, were employed to validate the specificity of the microbial biomarkers. Notably, coabundance analysis of the ecological network revealed that microbial biomarkers exhibit richer interspecies connections within the MPN, which may contribute to the pathogenesis of MPN.
CONCLUSION: This study presents a new predictive strategy for the clinic to determine MPNs from BPNs, which aids in the surgical decision-making for IPN.

References

  1. Yang CY, Lin YT, Lin LJ, et al. Stage shift improves lung cancer survival: real-world evidence. J Thorac Oncol 2023;18:47���56.
  2. Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol 2023;20:624���39.
  3. Bonney A, Malouf R, Marchal C, et al. Impact of low-dose computed tomography (LDCT) screening on lung cancer-related mortality. Cochrane Database Syst Rev 2022;8:CD013829.
  4. Mazzone PJ, Lam L. Evaluating the Patient With a Pulmonary Nodule: a Review. Jama 2022;327:264���73.
  5. Nair VS, Sundaram V, Desai M, Gould MK. Accuracy of models to identify lung nodule cancer risk in the National Lung Screening Trial. Am J Respir Crit Care Med 2018;197:1220���23.
  6. de Koning HJ, Meza R, Plevritis SK, et al. Benefits and harms of computed tomography lung cancer screening strategies: a comparative modeling study for the U.S. Preventive Services Task Force. Ann Intern Med 2014;160:311���20.
  7. Heerink WJ, de Bock GH, de Jonge GJ, et al. Complication rates of CT-guided transthoracic lung biopsy: meta-analysis. Eur Radiol 2017;27:138���48.
  8. Sacks D, McClenny TE, Cardella JF, Lewis CA. Society of interventional radiology clinical practice guidelines. J Vasc Interv Radiol 2003;14:S199���202.
  9. Gasparri R, Sabalic A, Spaggiari L. The Early Diagnosis of Lung Cancer: critical Gaps in the Discovery of Biomarkers. J Clin Med 2023;12:7244.
  10. Paez R, Kammer MN, Tanner NT, et al. Update on biomarkers for the stratification of indeterminate pulmonary nodules. Chest 2023;164:1028���41.
  11. Gilbert JA, Blaser MJ, Caporaso JG, et al. Current understanding of the human microbiome. Nat Med 2018;24:392���400.
  12. Caporaso JG, Lauber CL, Costello EK, et al. Moving pictures of the human microbiome. Genome Biol 2011;12:R50.
  13. David LA, Materna AC, Friedman J, et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol 2014;15:R89.
  14. Flores GE, Caporaso JG, Henley JB, et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol 2014;15:531.
  15. Vogtmann E, Hua X, Yu G, et al. The oral microbiome and lung cancer risk: an analysis of 3 prospective cohort studies. J Natl Cancer Inst 2022;114:1501���10.
  16. Hosgood HD, Cai Q, Hua X, et al. Variation in oral microbiome is associated with future risk of lung cancer among never-smokers. Thorax 2021;76:256���63.
  17. Zeng W, Wang Y, Wang Z, et al. Veillonella parvula promotes the proliferation of lung adenocarcinoma through the nucleotide oligomerization domain 2/cellular communication network factor 4/nuclear factor kappa B pathway. Discover Oncol 2023;14:129.
  18. Ma Q, Li X, Jiang H, et al. Mechanisms underlying the effects, and clinical applications, of oral microbiota in lung cancer: current challenges and prospects. Crit Rev Microbiol 2024;50:631���52.
  19. Hern��ndez-Cabanyero C, Vonaesch P. Ectopic colonization by oral bacteria as an emerging theme in health and disease. FEMS Microbiol Rev 2024;48:fuae012.
  20. Zhao F, An R, Wang L, et al. Specific gut microbiome and serum metabolome changes in lung cancer patients. Front Cell Infect Microbiol 2021;11:725284.
  21. Zheng Y, Fang Z, Xue Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes 2020;11:1030���42.
  22. Kim G, Park C, Yoon YK, et al. Prediction of lung cancer using novel biomarkers based on microbiome profiling of bronchoalveolar lavage fluid. Sci Rep 2024;14:1691.
  23. Pepe MS, Feng Z, Janes H, et al. Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J Natl Cancer Inst 2008;100:1432���38.
  24. McShane LM, Altman DG, Sauerbrei W, et al. REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 2005;93:387���91.
  25. Susam S, ��inkoo��lu A, Ceylan KC, et al. Comparison of Brock University, Mayo Clinic and Herder models for pretest probability of cancer in solid pulmonary nodules. Clin Respir J 2022;16:740���49.
  26. Wulaningsih W, Villamaria C, Akram A, et al. Deep learning models for predicting malignancy risk in CT-detected pulmonary nodules: a systematic review and meta-analysis. Lung 2024;202:625���36.
  27. DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006;72:5069���72.
  28. Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75:7537���41.
  29. Yu X, Jiang W, Kosik RO, et al. Gut microbiota changes and its potential relations with thyroid carcinoma. J Adv Res 2021;35:61���70.
  30. Valkenborg D, Rousseau AJ, Geubbelmans M, Burzykowski T. Support vector machines. Am J Orthod Dentofacial Orthop 2023;164:754���57.
  31. Ohno Y, Aoyagi K, Yaguchi A, et al. Differentiation of benign from malignant pulmonary nodules by using a convolutional neural network to determine volume change at chest CT. Radiology 2020;296:432���43.
  32. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007;73:5261���67.
  33. Lorencin I, An��eli�� N, ��panjol J, Car Z. Using multi-layer perceptron with Laplacian edge detector for bladder cancer diagnosis. Artif Intell Med 2020;102:101746.
  34. Armour CR, Sovacool KL, Close WL, et al. Machine learning classification by fitting amplicon sequences to existing OTUs. mSphere 2023;8:e0033623.
  35. Liu Y, Teo SM, M��ric G, et al. The gut microbiome is a significant risk factor for future chronic lung disease. J Allergy Clin Immunol 2023;151:943���52.
  36. Wei W, Li Y, Huang T. Using machine learning methods to study colorectal cancer tumor micro-environment and its biomarkers. Int J Mol Sci 2023;24:1113.
  37. McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med 2013;369:910���909.
  38. Roth AE. Lloyd Shapley (1923-2016). Nature 2016;532:178.
  39. Zhou X, You L, Xin Z, et al. Leveraging circulating microbiome signatures to predict tumor immune microenvironment and prognosis of patients with non-small cell lung cancer. J Transl Med 2023;21:800.
  40. Shi J, Yang Y, Xie H, et al. Association of oral microbiota with lung cancer risk in a low-income population in the Southeastern USA. Cancer Causes Control 2021;32:1423���32.
  41. Tsay JJ, Wu BG, Sulaiman I, et al. Lower airway dysbiosis affects lung cancer progression. Cancer Discov 2021;11:293���307.
  42. Pathak JL, Yan Y, Zhang Q, et al. The role of oral microbiome in respiratory health and diseases. Respir Med 2021;185:106475.
  43. Jiang X, Zhang Y, Wang H, et al. In-depth metaproteomics analysis of oral microbiome for lung cancer. Research (Wash D C) 2022;2022:9781578.
  44. Baima G, Minoli M, Michaud DS, et al. Periodontitis and risk of cancer: mechanistic evidence. Periodontol 2000 2024;96:83���94.
  45. Tsay JJ, Wu BG, Badri MH, et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med 2018;198:1188���98.
  46. Vogtmann E, Hua X, Zhou L, et al. Temporal variability of oral microbiota over 10 months and the implications for future epidemiologic studies. Cancer Epidemiol Biomarkers Prev 2018;27:594���600.
  47. Peng X, Cheng L, You Y, et al. Oral microbiota in human systematic diseases. Int J Oral Sci 2022;14:14.
  48. Lozupone CA, Knight R. Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev 2008;32:557���78.
  49. Pedersen AML, S��rensen CE, Proctor GB, et al. Salivary secretion in health and disease. J Oral Rehabil 2018;45:730���46.
  50. Keesing F, Holt RD, Ostfeld RS. Effects of species diversity on disease risk. Ecol Lett 2006;9:485���98.
  51. Thomas AM, Manghi P, Asnicar F, et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med 2019;25:667���78.
  52. Tsilimigras MC, Fodor AA. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol 2016;265:330���35.
  53. Teixeira M, Silva F, Ferreira RM, et al. A review of machine learning methods for cancer characterization from microbiome data. Npj Precis Oncol 2024;8:123.
  54. Dong Z, Wang Q, Ke Y, et al. Prediction of 3-year risk of diabetic kidney disease using machine learning based on electronic medical records. J Transl Med 2022;20:143.
  55. Yan J, Xu Y, Cheng Q, et al. LightGBM: accelerated genomically designed crop breeding through ensemble learning. Genome Biol 2021;22:271.
  56. Li L, Ye Z, Yang S, et al. Diagnosis of pulmonary nodules by DNA methylation analysis in bronchoalveolar lavage fluids. Clin Clin Epigenet 2021;13:185.
  57. Zheng Y, Dong J, Yang X, et al. Benign-malignant classification of pulmonary nodules by low-dose spiral computerized tomography and clinical data with machine learning in opportunistic screening. Cancer Med 2023;12:12050���64.
  58. Lee Y, Cappellato M, Di Camillo B. Machine learning-based feature selection to search stable microbial biomarkers: application to inflammatory bowel disease. Gigascience 2022;12:giad083.
  59. Zhang C, Leng W, Sun C, et al. Urine proteome profiling predicts lung cancer from control cases and other tumors. EBioMedicine 2018;30:120���28.
  60. Zhang M, Zhang Y, Sun Y, et al. Intratumoral microbiota impacts the first-line treatment efficacy and survival in non-small cell lung cancer patients free of lung infection. J Healthc Eng 2022;2022:5466853.
  61. Zheng X, Sun X, Liu Q, et al. The composition alteration of respiratory microbiota in lung cancer. Cancer Invest 2020;38:158���68.
  62. Bello S, Vengoechea JJ, Ponce-Alonso M, et al. Core microbiota in central lung cancer with streptococcal enrichment as a possible diagnostic marker. Arch Bronconeumol 2021;57:681���89.
  63. Takabe YJ, Allen E, Allen L, et al. Rothia in nonsmall cell lung cancer is associated with worse survival. J Surg Res 2024;296:106���14.
  64. Madapoosi SS, Cruickshank-Quinn C, Opron K, et al. Lung microbiota and metabolites collectively associate with clinical outcomes in milder stage chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2022;206:427���39.
  65. Qian X, Zhang HY, Li QL, et al. Integrated microbiome, metabolome, and proteome analysis identifies a novel interplay among commensal bacteria, metabolites and candidate targets in non-small cell lung cancer. Clin Transl Med 2022;12:e947.
  66. Christiani DC. The oral microbiome and lung cancer risk. Thorax 2021;76:216���17.
  67. Sayin VI, LeBoeuf SE, Papagiannakopoulos T. Targeting metabolic bottlenecks in lung cancer. Trends Cancer 2019;5:457���59.

MeSH Term

Humans
Prospective Studies
Microbiota
Male
Female
Middle Aged
Lung Neoplasms
Aged
Saliva
Adult
Biomarkers
Multiple Pulmonary Nodules
Mouth
Biomarkers, Tumor
Risk Assessment
Machine Learning

Chemicals

Biomarkers
Biomarkers, Tumor

Word Cloud

Created with Highcharts 10.0.0IPNmicrobiotapredictiveMPNbiomarkerspulmonaryriskpredictionmicrobialbenignmalignantindeterminatenodulesmalignancyOralLCoralbiomarkersalivathroattonguecoatingthreeanalysisFISHmachinerevealedcharacteristicsidentifiedsampleoptimalmodelexhibitdiseasepredictingwithinstudyBACKGROUND:Determiningstatusintermediatesignificantclinicalchallengemicrobiota-lungcancerinteractionsqualifiedpromisingnon-invasiveMATERIALSANDMETHODS:Prospectivelycollectedswabssamples1040patients70healthycontrolsacrosshospitalsFollowingIPNsdiagnosedBPN16SrRNAsequencingbioinformaticsfluorescencesituhybridizationsevenlearningalgorithmssupportvectorlogisticregressionna��veBayesmulti-layerperceptronrandomforestgradient-boostingdecisiontreeLightGBMdifferentstagesHC-BPN-MPNtypeshighestpotentialconstructedevaluatedefficacydeterminedAdditionallybasedSHAPalgorithminterpretationMLmodel'soutputdevelopedvisualizedsystemwebRESULTS:Salivaswabmicrobiotassite-specifictypesaliva-LightGBMdemonstratedbestperformanceAUC = 088795%CI:0865-0918ActinomycesRothiaStreptococcusPrevotellaPorphyromonasVeillonellausedconfirmpresencetumorsexternaldatacohortalongnon-IPNcohortsemployedvalidatespecificityNotablycoabundanceecologicalnetworkricherinterspeciesconnectionsmaycontributepathogenesisCONCLUSION:presentsnewstrategyclinicdetermineMPNsBPNsaidssurgicaldecision-makingnodules:prospectivemulticenter

Similar Articles

Cited By

No available data.