Memristive Ion Dynamics to Enable Biorealistic Computing.
Ruoyu Zhao, Seung Ju Kim, Yichun Xu, Jian Zhao, Tong Wang, Rivu Midya, Sabyasachi Ganguli, Ajit K Roy, Madan Dubey, R Stanley Williams, J Joshua Yang
Author Information
Ruoyu Zhao: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States. ORCID
Seung Ju Kim: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States. ORCID
Yichun Xu: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States. ORCID
Jian Zhao: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States. ORCID
Tong Wang: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States. ORCID
Rivu Midya: Sandia National Laboratories, Livermore, California 94550, United States.
Sabyasachi Ganguli: Air Force Research Laboratory Materials and Manufacturing Directorate Wright - Patterson Air Force Base Dayton, Ohio 45433, United States.
Ajit K Roy: Air Force Research Laboratory Materials and Manufacturing Directorate Wright - Patterson Air Force Base Dayton, Ohio 45433, United States. ORCID
Madan Dubey: Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20723, United States.
R Stanley Williams: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States. ORCID
J Joshua Yang: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States. ORCID
中文译文
English
Conventional artificial intelligence (AI) systems are facing bottlenecks due to the fundamental mismatches between AI models, which rely on parallel, in-memory, and dynamic computation, and traditional transistors, which have been designed and optimized for sequential logic operations. This calls for the development of novel computing units beyond transistors. Inspired by the high efficiency and adaptability of biological neural networks, computing systems mimicking the capabilities of biological structures are gaining more attention. Ion-based memristive devices (IMDs), owing to the intrinsic functional similarities to their biological counterparts, hold significant promise for implementing emerging neuromorphic learning and computing algorithms. In this article, we review the fundamental mechanisms of IMDs based on ion drift and diffusion to elucidate the origins of their diverse dynamics. We then examine how these mechanisms operate within different materials to enable IMDs with various types of switching behaviors, leading to a wide range of applications, from emulating biological components to realizing specialized computing requirements. Furthermore, we explore the potential for IMDs to be modified and tuned to achieve customized dynamics, which positions them as one of the most promising hardware candidates for executing bioinspired algorithms with unique specifications. Finally, we identify the challenges currently facing IMDs that hinder their widespread usage and highlight emerging research directions that could significantly benefit from incorporating IMDs.
Adv Sci (Weinh). 2023 Jul;10(19):e2300659
[PMID: 37189211 ]
RSC Adv. 2019 Jan 22;9(6):2941-2947
[PMID: 35518991 ]
Adv Mater. 2011 Apr 19;23(15):1730-3
[PMID: 21491505 ]
Nat Commun. 2018 Jan 29;9(1):417
[PMID: 29379008 ]
Science. 2019 May 10;364(6440):570-574
[PMID: 31023890 ]
Science. 2022 Jun 3;376(6597):eabj9979
[PMID: 35653464 ]
Adv Mater. 2022 Dec;34(51):e2207371
[PMID: 36217845 ]
Nanotechnology. 2019 Aug 16;30(33):335203
[PMID: 31026860 ]
Adv Sci (Weinh). 2023 Aug;10(22):e2301323
[PMID: 37222619 ]
Nat Commun. 2022 Aug 6;13(1):4591
[PMID: 35933437 ]
Nano Lett. 2018 Jan 10;18(1):434-441
[PMID: 29236504 ]
ACS Nano. 2023 Jul 11;17(13):12652-12662
[PMID: 37382222 ]
Nat Neurosci. 2000 Nov;3 Suppl:1178-83
[PMID: 11127835 ]
J Physiol. 1948 Mar 15;107(2):165-81
[PMID: 16991796 ]
iScience. 2020 Dec 03;24(1):101889
[PMID: 33458606 ]
Nanoscale Res Lett. 2020 Jan 31;15(1):30
[PMID: 32006131 ]
Front Neurosci. 2011 May 31;5:73
[PMID: 21747754 ]
Nat Commun. 2017 Dec 19;8(1):2204
[PMID: 29259188 ]
Nat Commun. 2014 Jun 23;5:4232
[PMID: 24953477 ]
Front Neurosci. 2016 Feb 23;10:57
[PMID: 26941598 ]
Nat Commun. 2017 May 17;8:15448
[PMID: 28513627 ]
Nano Lett. 2023 Apr 12;23(7):2952-2957
[PMID: 36996390 ]
Nat Commun. 2021 May 20;12(1):2968
[PMID: 34016978 ]
Nat Commun. 2021 Jun 7;12(1):3351
[PMID: 34099691 ]
Nat Commun. 2023 Apr 15;14(1):2169
[PMID: 37061543 ]
J Neurobiol. 2005 Jul;64(1):75-90
[PMID: 15884003 ]
Nat Mater. 2017 Jan;16(1):101-108
[PMID: 27669052 ]
Adv Mater. 2022 Jun;34(25):e2103376
[PMID: 34510567 ]
Science. 2024 Feb 23;383(6685):903-910
[PMID: 38386733 ]
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14419-24
[PMID: 20660781 ]
Neuron. 2012 Sep 6;75(5):762-77
[PMID: 22958818 ]
Nat Nanotechnol. 2021 Jan;16(1):58-62
[PMID: 33169008 ]
Small. 2022 Sep;18(38):e2203311
[PMID: 35989093 ]
Small. 2021 Feb;17(7):e2006760
[PMID: 33502084 ]
J Neurophysiol. 1998 Jul;80(1):1-27
[PMID: 9658025 ]
Nat Commun. 2020 Dec 4;11(1):6207
[PMID: 33277501 ]
Small. 2022 Apr;18(16):e2200185
[PMID: 35218611 ]
Sci Adv. 2024 Mar;10(9):eadk6438
[PMID: 38416821 ]
Nano Lett. 2024 Feb 14;24(6):1951-1958
[PMID: 38315061 ]
Nat Commun. 2022 Sep 30;13(1):5762
[PMID: 36180426 ]
Nanoscale. 2020 Jul 2;12(25):13531-13539
[PMID: 32555882 ]
Neuron. 2004 Sep 2;43(5):745-57
[PMID: 15339654 ]
Nat Nanotechnol. 2023 Sep;18(9):1036-1043
[PMID: 37142710 ]
Nat Mater. 2007 Nov;6(11):833-40
[PMID: 17972938 ]
Nat Commun. 2022 Apr 26;13(1):2247
[PMID: 35474061 ]
Adv Mater. 2023 Jan;35(1):e2207133
[PMID: 36222395 ]
Science. 1995 Jun 9;268(5216):1503-6
[PMID: 7770778 ]
Adv Sci (Weinh). 2019 Apr 02;6(10):1900024
[PMID: 31131198 ]
Sci Rep. 2016 Jun 23;6:28525
[PMID: 27334443 ]
J Phys Chem Lett. 2022 Jun 3;:5101-5108
[PMID: 35657147 ]
Adv Mater. 2022 Oct;34(40):e2203643
[PMID: 35980937 ]
Adv Mater. 2023 Sep;35(37):e2203684
[PMID: 35735048 ]
Nanoscale. 2023 Oct 5;15(38):15665-15674
[PMID: 37724437 ]
ACS Nano. 2022 Dec 27;16(12):21324-21333
[PMID: 36519795 ]
ACS Nano. 2013 Jul 23;7(7):6117-22
[PMID: 23806075 ]
Nat Commun. 2023 Nov 7;14(1):7176
[PMID: 37935751 ]
ACS Appl Mater Interfaces. 2023 Feb 1;15(4):5495-5503
[PMID: 36691225 ]
Nano Lett. 2024 Apr 17;24(15):4383-4392
[PMID: 38513213 ]
Adv Mater. 2024 Jan;36(1):e2307334
[PMID: 37708845 ]
ACS Appl Mater Interfaces. 2019 Jul 10;11(27):24230-24240
[PMID: 31119929 ]
Nat Commun. 2018 Aug 10;9(1):3208
[PMID: 30097585 ]
Nat Commun. 2023 Sep 27;14(1):5723
[PMID: 37758693 ]
Nanoscale Horiz. 2024 Feb 26;9(3):427-437
[PMID: 38086679 ]
Science. 2004 Jun 25;304(5679):1926-9
[PMID: 15218136 ]
Nanoscale. 2018 Feb 8;10(6):2721-2726
[PMID: 29419836 ]
J Neurosci. 1996 Sep 15;16(18):5661-71
[PMID: 8795622 ]
Nature. 2017 Oct 18;550(7676):354-359
[PMID: 29052630 ]
Nat Commun. 2017 May 12;8:15199
[PMID: 28497781 ]
Nat Mater. 2013 Feb;12(2):114-7
[PMID: 23241533 ]
Nat Commun. 2022 Aug 10;13(1):4698
[PMID: 35948574 ]
Mater Horiz. 2021 Feb 1;8(2):619-629
[PMID: 34821279 ]
ACS Appl Mater Interfaces. 2022 Jan 26;14(3):4371-4377
[PMID: 35014262 ]
Small. 2020 Oct;16(41):e2003225
[PMID: 32945139 ]
Nat Commun. 2023 Oct 11;14(1):6385
[PMID: 37821427 ]
J Neurochem. 2019 Oct;151(2):139-165
[PMID: 31318452 ]
Nat Mater. 2019 Apr;18(4):309-323
[PMID: 30894760 ]
ACS Appl Mater Interfaces. 2023 Jun 21;15(24):29287-29296
[PMID: 37303194 ]
Nat Nanotechnol. 2020 Sep;15(9):776-782
[PMID: 32601451 ]
Nat Mater. 2023 Feb;22(2):242-248
[PMID: 36635590 ]
Nat Mater. 2019 Feb;18(2):141-148
[PMID: 30559410 ]
ACS Nano. 2018 May 22;12(5):4702-4711
[PMID: 29578693 ]
Nano Lett. 2023 Nov 8;23(21):9711-9718
[PMID: 37875263 ]
Nat Commun. 2020 Apr 20;11(1):1861
[PMID: 32313096 ]
Nature. 2019 Nov;575(7784):607-617
[PMID: 31776490 ]
Nat Mater. 2018 Apr;17(4):335-340
[PMID: 29358642 ]
J Phys Chem Lett. 2021 Sep 23;12(37):8999-9010
[PMID: 34515487 ]
Nat Commun. 2023 Jun 6;14(1):3285
[PMID: 37280223 ]
Nature. 2020 Sep;585(7826):518-523
[PMID: 32968256 ]
Nanotechnology. 2020 Nov 6;31(45):454002
[PMID: 32634787 ]
Adv Mater. 2024 Jan;36(4):e2308843
[PMID: 37934889 ]
Nanotechnology. 2023 Nov 03;35(3):
[PMID: 37852218 ]
Nat Commun. 2021 Oct 19;12(1):6081
[PMID: 34667171 ]
Adv Mater. 2018 Apr;30(14):e1705193
[PMID: 29436065 ]
Adv Sci (Weinh). 2020 Jul 26;7(18):2001842
[PMID: 32999852 ]
Nat Rev Neurosci. 2020 Jun;21(6):303-321
[PMID: 32393820 ]
Nanoscale Horiz. 2024 Apr 29;9(5):853-862
[PMID: 38505960 ]
Nature. 2021 Aug;596(7873):583-589
[PMID: 34265844 ]
Nat Rev Neurosci. 2008 Apr;9(4):292-303
[PMID: 18319728 ]
Adv Mater. 2016 Aug;28(31):6562-7
[PMID: 27192161 ]
Adv Mater. 2020 Apr;32(15):e1902434
[PMID: 31364219 ]
Adv Mater. 2023 Sep;35(37):e2301924
[PMID: 37199224 ]
Nat Mater. 2010 May;9(5):403-6
[PMID: 20400954 ]
Nano Lett. 2022 Sep 14;22(17):7246-7253
[PMID: 35984717 ]
ACS Appl Mater Interfaces. 2023 May 31;15(21):25713-25725
[PMID: 37199948 ]
Nanotechnology. 2019 Aug 9;30(32):325201
[PMID: 30991363 ]
Nat Commun. 2018 Nov 7;9(1):4661
[PMID: 30405124 ]
Adv Mater. 2023 Sep;35(37):e2203830
[PMID: 35808962 ]
J Neurocytol. 2002 Mar-Jun;31(3-5):299-316
[PMID: 12815249 ]
Nanotechnology. 2023 Oct 09;34(50):
[PMID: 37812619 ]
Nanoscale Res Lett. 2020 Jan 30;15(1):27
[PMID: 32002695 ]
Annu Rev Physiol. 2002;64:355-405
[PMID: 11826273 ]
Nature. 2022 Dec;612(7938):43-50
[PMID: 36450907 ]
Sci Rep. 2020 Sep 17;10(1):15281
[PMID: 32943646 ]
Nat Commun. 2019 Jan 8;10(1):81
[PMID: 30622251 ]
Adv Mater. 2019 Jan;31(3):e1803849
[PMID: 30461092 ]
Adv Mater. 2019 May;31(19):e1900021
[PMID: 30924201 ]
Science. 2019 Oct 11;366(6462):210-215
[PMID: 31439757 ]
ACS Appl Mater Interfaces. 2018 Oct 10;10(40):33768-33772
[PMID: 30259727 ]
Sci Rep. 2019 Jan 10;9(1):53
[PMID: 30631087 ]
J Phys Chem Lett. 2022 Jan 27;13(3):884-893
[PMID: 35049317 ]
J Cereb Blood Flow Metab. 2012 Jul;32(7):1222-32
[PMID: 22434069 ]
Nat Commun. 2020 Nov 19;11(1):5896
[PMID: 33214548 ]
Nat Rev Neurosci. 2000 Dec;1(3):181-90
[PMID: 11257906 ]
Adv Sci (Weinh). 2023 May;10(15):e2300471
[PMID: 36950731 ]
Nat Commun. 2022 May 19;13(1):2811
[PMID: 35589710 ]
Adv Sci (Weinh). 2022 Feb;9(4):e2103484
[PMID: 34837480 ]
Nat Comput Sci. 2022 Jan;2(1):10-19
[PMID: 38177712 ]
Small. 2018 Jul;14(27):e1800945
[PMID: 29806233 ]
Adv Mater. 2023 Nov;35(47):e2304148
[PMID: 37527440 ]
Nat Mater. 2022 Feb;21(2):195-202
[PMID: 34608285 ]
ACS Nano. 2021 Nov 23;15(11):17214-17231
[PMID: 34730935 ]
ACS Appl Mater Interfaces. 2018 Mar 28;10(12):10165-10172
[PMID: 29488370 ]
iScience. 2020 Nov 17;23(12):101809
[PMID: 33305176 ]
Nanotechnology. 2022 Jan 07;33(13):
[PMID: 34915460 ]
Nat Commun. 2019 Aug 1;10(1):3453
[PMID: 31371705 ]
Nanomaterials (Basel). 2021 Oct 27;11(11):
[PMID: 34835625 ]
Adv Mater. 2017 Mar;29(12):
[PMID: 28134458 ]
ACS Nano. 2024 Oct 15;18(41):28131-28141
[PMID: 39360750 ]
Nat Commun. 2014;5:3158
[PMID: 24452193 ]
Sci Technol Adv Mater. 2023 Jan 11;24(1):2162325
[PMID: 36684849 ]
Adv Sci (Weinh). 2019 Aug 26;6(20):1901072
[PMID: 31637163 ]
Adv Mater. 2023 Oct;35(40):e2302863
[PMID: 37392013 ]
Glob Chall. 2019 Aug 07;3(11):1900015
[PMID: 31692992 ]
Science. 2022 Jul 29;377(6605):539-543
[PMID: 35901152 ]
Nat Rev Neurosci. 2007 Jun;8(6):451-65
[PMID: 17514198 ]
Front Neurosci. 2022 Feb 24;16:795876
[PMID: 35281488 ]
Nat Commun. 2023 May 27;14(1):3070
[PMID: 37244897 ]
Nature. 2023 Mar;615(7954):823-829
[PMID: 36991190 ]
Nat Commun. 2024 Jan 4;15(1):277
[PMID: 38177124 ]
Nano Lett. 2015 Mar 11;15(3):2203-11
[PMID: 25710872 ]
Adv Mater. 2018 Feb;30(8):
[PMID: 29318678 ]
Adv Mater. 2018 Dec;30(51):e1805454
[PMID: 30334296 ]
Nat Commun. 2023 Dec 8;14(1):8143
[PMID: 38065951 ]
Nat Commun. 2022 Apr 19;13(1):2074
[PMID: 35440122 ]
ACS Appl Mater Interfaces. 2024 Feb 7;16(5):6057-6067
[PMID: 38285926 ]
Nat Commun. 2022 Nov 3;13(1):6590
[PMID: 36329017 ]
ACS Nano. 2018 Nov 27;12(11):11263-11273
[PMID: 30395439 ]
Nat Mater. 2017 Apr;16(4):414-418
[PMID: 28218920 ]
Annu Rev Neurosci. 2005;28:503-32
[PMID: 16033324 ]
Nat Nanotechnol. 2019 Jan;14(1):35-39
[PMID: 30420759 ]
ACS Appl Mater Interfaces. 2022 Sep 28;14(38):43474-43481
[PMID: 36098632 ]
Adv Sci (Weinh). 2020 Oct 08;7(22):2002251
[PMID: 33240773 ]
Nat Commun. 2017 Oct 12;8(1):882
[PMID: 29026110 ]
Nature. 2009 Jun 4;459(7247):663-7
[PMID: 19396156 ]
Discrete Contin Dyn Syst Ser A. 2012 Aug 1;32(8):2729-2757
[PMID: 23667306 ]
Nat Neurosci. 1999 Jun;2(6):515-20
[PMID: 10448215 ]
ACS Appl Mater Interfaces. 2019 Aug 14;11(32):29408-29415
[PMID: 31328497 ]
Nat Commun. 2012 Mar 13;3:732
[PMID: 22415823 ]
Nat Rev Neurosci. 2011 Jun 20;12(7):375-87
[PMID: 21685931 ]
Nat Neurosci. 2000 Sep;3(9):919-26
[PMID: 10966623 ]
Adv Mater. 2023 Sep;35(37):e2204778
[PMID: 36036786 ]
ACS Appl Mater Interfaces. 2020 May 27;12(21):24370-24379
[PMID: 32368896 ]
Adv Mater. 2019 Dec;31(49):e1902761
[PMID: 31550405 ]
Nat Commun. 2021 Aug 31;12(1):5198
[PMID: 34465783 ]
Nat Commun. 2022 Aug 12;13(1):4556
[PMID: 35961959 ]
Nat Commun. 2018 Jun 19;9(1):2385
[PMID: 29921923 ]
Nat Commun. 2022 Jun 1;13(1):3037
[PMID: 35650181 ]
Nature. 2018 Feb 21;554(7693):500-504
[PMID: 29469093 ]
Neuroscience. 2001;102(3):527-40
[PMID: 11226691 ]
Nano Converg. 2023 Dec 19;10(1):58
[PMID: 38110639 ]
ACS Appl Mater Interfaces. 2022 Aug 10;14(31):35959-35968
[PMID: 35892238 ]
ACS Nano. 2024 Feb 27;18(8):6373-6386
[PMID: 38349619 ]
Science. 2022 Feb 4;375(6580):533-539
[PMID: 35113713 ]
Nat Nanotechnol. 2015 May;10(5):403-6
[PMID: 25849785 ]
Physiol Rev. 2004 Jan;84(1):87-136
[PMID: 14715912 ]
Nat Nanotechnol. 2025 Jan;20(1):83-92
[PMID: 39424951 ]
Small. 2024 May;20(18):e2309163
[PMID: 38150637 ]
Nat Commun. 2022 Jun 3;13(1):2888
[PMID: 35660724 ]
Adv Mater. 2018 Mar;30(9):
[PMID: 29318659 ]
Nature. 2017 Aug 17;548(7667):318-321
[PMID: 28792931 ]
Sci Adv. 2022 Dec 23;8(51):eade0072
[PMID: 36563153 ]
Nanomicro Lett. 2023 Mar 21;15(1):69
[PMID: 36943534 ]
Chem Rev. 2023 Dec 13;123(23):13796-13865
[PMID: 37976052 ]
ACS Appl Mater Interfaces. 2024 Feb 7;16(5):6176-6188
[PMID: 38271202 ]
Nat Commun. 2023 Nov 1;14(1):6697
[PMID: 37914696 ]
Adv Mater. 2018 Jun;30(25):e1800220
[PMID: 29726076 ]
Nature. 2022 Apr;604(7905):255-260
[PMID: 35418630 ]
Nanomaterials (Basel). 2019 Sep 21;9(10):
[PMID: 31546659 ]
J Chem Phys. 2008 Jan 7;128(1):014704
[PMID: 18190209 ]
Nanoscale. 2020 Feb 7;12(5):3267-3272
[PMID: 31971203 ]
Adv Mater. 2024 Feb;36(7):e2309314
[PMID: 37879643 ]
Sci Technol Adv Mater. 2023 Feb 28;24(1):2162323
[PMID: 36872944 ]
Sci Bull (Beijing). 2021 Aug 30;66(16):1624-1633
[PMID: 36654296 ]
Nat Nanotechnol. 2008 Jul;3(7):429-33
[PMID: 18654568 ]
Adv Mater. 2019 Feb;31(7):e1805284
[PMID: 30589113 ]
Neural Networks, Computer
Ions
Artificial Intelligence
Algorithms