Nickel removal from synthetic wastewater by novel zeolite-doped magnesium- iron- and zinc-oxide nanocomposites by hydrothermal-calcination technique.

Rashad Al-Gaashani, Haya Alyasi, Fatima Karamshahi, Simjo Simson, Yongfeng Tongb, Viktor Kochkodan, Jenny Lawler
Author Information
  1. Rashad Al-Gaashani: Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, 34110, Qatar. ralgaashani@hbku.edu.qa.
  2. Haya Alyasi: Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, 34110, Qatar.
  3. Fatima Karamshahi: Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar.
  4. Simjo Simson: Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, 34110, Qatar.
  5. Yongfeng Tongb: HBKU Core Labs, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
  6. Viktor Kochkodan: Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, 34110, Qatar.
  7. Jenny Lawler: Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, 34110, Qatar.

Abstract

This study aims to modify raw zeolite with metal oxide nanocomposites to remove nickel (Ni) ions from synthetic wastewater. Novel zeolite-doped magnesium oxide (MgO), iron oxide (FeO), and zinc oxide (ZnO) nanocomposites were synthesized by hydrothermal-calcination methods. The novel zeolite-doped metal oxide nanocomposites were used as adsorbents to remove Ni (II) ions from synthetic wastewater. Several advanced techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometer (VSM) were applied to study the structural, morphological, chemical, and magnetic properties of the prepared materials. Doped zeolite with ZnO, MgO, and FeO significantly enhances the removal of Ni (II) ions from synthetic wastewater. The zeolite-doped MgO + FeO + ZnO sample achieved a Ni (II) ions removal efficiency of 99.6%, compared to 58.9% for raw zeolites. The removal efficiencies of Ni (II) ions (Ci = 30 mg/L) from highest to lowest were 99.56%, 99.53%, 91.4%, 67.8%, and 58.93% by zeolite-doped MgO + FeO + ZnO, zeolite-doped MgO, zeolite-doped ZnO, zeolite-doped FeO, and raw zeolite sample, respectively. The highest adsorption capacity was 17.13 mg/g of zeolite-doped MgO + FeO + ZnO samples. The experimental adsorption data collected were fitted using five isotherm models, and four kinetic models. The Langmuir adsorption isotherm model and the pseudo-second-order kinetic model provided the best fit for the experimental adsorption data. This suggests that the adsorption process is complex, possibly involving electron interactions between the active sites of doped zeolite and Ni (II) species. The obtained data indicates that zeolite-doped with MgO, FeO and ZnO notably enhances the adsorptive properties of Ni (II) from synthetic wastewater. The obtained thermodynamic values confirmed that the adsorption process is spontaneous and endothermic, with increased randomness at the solid-solution interface during the adsorption process.

References

  1. Nanotechnology. 2021 Dec 06;33(9): [PMID: 34794130]
  2. Environ Pollut. 2021 Jul 1;280:116995 [PMID: 33789220]
  3. J Colloid Interface Sci. 2022 May 15;614:538-546 [PMID: 35121512]
  4. Environ Technol. 2020 Sep;41(21):2817-2832 [PMID: 30767655]
  5. Cancer Causes Control. 2007 Feb;18(1):7-27 [PMID: 17186419]
  6. Nat Protoc. 2006;1(6):2661-7 [PMID: 17406522]
  7. Phys Chem Chem Phys. 2012 May 21;14(19):6698-723 [PMID: 22499238]
  8. Chem Soc Rev. 2014 Nov 21;43(22):7548-61 [PMID: 24671148]
  9. Chem Rev. 2018 Jun 13;118(11):5265-5329 [PMID: 29746122]
  10. J Environ Sci (China). 2008;20(1):1-13 [PMID: 18572516]
  11. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3463-70 [PMID: 10097058]
  12. J Biomed Mater Res A. 2015 Mar;103(3):949-58 [PMID: 24853075]
  13. ACS Appl Mater Interfaces. 2014 Sep 10;6(17):15395-402 [PMID: 25136924]
  14. Int J Environ Res Public Health. 2020 Jan 21;17(3): [PMID: 31973020]
  15. Bioresour Technol. 2009 Apr;100(8):2375-80 [PMID: 19114302]
  16. Adv Colloid Interface Sci. 2020 Jun;280:102138 [PMID: 32387754]
  17. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2001;36(6):1073-87 [PMID: 11501306]
  18. BMC Pulm Med. 2016 Jan 12;16:6 [PMID: 26754125]
  19. J Hazard Mater. 2005 Dec 9;127(1-3):89-101 [PMID: 16076523]
  20. Int J Biol Macromol. 2021 Jan 1;166:722-729 [PMID: 33137386]
  21. Mater Sci Eng C Mater Biol Appl. 2016 Nov 1;68:505-511 [PMID: 27524047]
  22. Water Res. 2018 Nov 1;144:145-161 [PMID: 30025266]
  23. Sci Rep. 2024 Jul 29;14(1):17414 [PMID: 39075047]
  24. Chemosphere. 2021 Jul;274:129844 [PMID: 33582537]
  25. J Hazard Mater. 2007 Jan 10;139(2):254-9 [PMID: 16839666]
  26. J Hazard Mater. 2009 Nov 15;171(1-3):335-9 [PMID: 19576692]
  27. Chemosphere. 2023 Jul;328:138508 [PMID: 36972873]
  28. Sci Rep. 2021 Apr 8;11(1):7808 [PMID: 33833271]
  29. Acc Chem Res. 2021 Jun 1;54(11):2579-2590 [PMID: 33999615]
  30. J Hazard Mater. 2007 Mar 6;141(1):77-85 [PMID: 16879919]
  31. J Mol Med (Berl). 2011 Oct;89(10):961-70 [PMID: 21698426]

Word Cloud

Created with Highcharts 10.0.0zeolite-dopedNiadsorptionIIoxideionssyntheticwastewaterzeolitenanocompositesMgOFeOZnOremovalrawX-rayelectronsampleMgO + FeO + ZnO99dataprocessstudymetalremovehydrothermal-calcinationnovelmicroscopyspectroscopypropertiesenhances58highestexperimentalisothermmodelskineticmodelobtainedaimsmodifynickelNovelmagnesiumironzincsynthesizedmethodsusedadsorbentsSeveraladvancedtechniquesincludingdiffractionXRDtransmissionTEMscanningSEMenergy-dispersiveEDSphotoelectronXPSvibratingmagnetometerVSMappliedstructuralmorphologicalchemicalmagneticpreparedmaterialsDopedsignificantlyachievedefficiency6%compared9%zeolitesefficienciesCi = 30 mg/Llowest56%53%914%678%93%respectivelycapacity1713 mg/gsamplescollectedfittedusingfivefourLangmuirpseudo-second-orderprovidedbestfitsuggestscomplexpossiblyinvolvinginteractionsactivesitesdopedspeciesindicatesnotablyadsorptivethermodynamicvaluesconfirmedspontaneousendothermicincreasedrandomnesssolid-solutioninterfaceNickelmagnesium-iron-zinc-oxidetechnique

Similar Articles

Cited By