Antimicrobial resistance, virulence gene profiling, and genetic diversity of multidrug-resistant Pseudomonas aeruginosa isolates in Mazandaran, Iran.

Ghazaleh Elahi, Hamid Reza Goli, Morvarid Shafiei, Vajihe Sadat Nikbin, Mehrdad Gholami
Author Information
  1. Ghazaleh Elahi: Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
  2. Hamid Reza Goli: Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
  3. Morvarid Shafiei: Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
  4. Vajihe Sadat Nikbin: Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
  5. Mehrdad Gholami: Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. mehrdad_gholami90@yahoo.com.

Abstract

BACKGROUND: Pseudomonas aeruginosa is a major cause of healthcare-associated infections (HAIs), particularly in immunocompromised patients, leading to high morbidity and mortality rates. This study aimed to investigate the antimicrobial resistance patterns, virulence gene profiles, and genetic diversity among P. aeruginosa isolates from hospitalized patients in Mazandaran, Iran.
METHODS: From September 2021 to April 2022, 82 non-duplicate P. aeruginosa isolates were collected from diverse clinical sources. Identification was confirmed using API 20 NE (bioMérieux, Marcy l'Etoile, France). Antimicrobial susceptibility testing was conducted using the Kirby-Bauer disk diffusion method according to CLSI guidelines to assess resistance to a range of antibiotics. The virulence profile (exoT, exoY, exoU, toxA, plcH, plcN, algD, aprA, lasB and exoS) of each P. aeruginosa isolate was determined by PCR. The genetic diversity among the strains was evaluated using the random amplification of polymorphic DNA (RAPD) technique. Clustering was based on a Dice similarity coefficient of ≥ 85%.
RESULTS: Of the 82 total strains, P. aeruginosa exhibited the highest and lowest resistance toward ticarcillin-clavulanate (98.78%) and colistin (0%), respectively. Moreover, 100% of the P. aeruginosa isolates were MDR. The following prevalence of virulence factor genes was observed: aprA, lasB, algD, toxA, plcH, exoY, and exoT in 100% of isolates. The plcN, exoS, and exoU were identified 98.78%, 67.07%, and 45.12%, respectively. The RAPD patterns obtained with primers 272 and 208 had respectively 2-19 and 6-17 bands. According to the Dice similarity coefficient of higher than 85%, 56 and 39 clusters were recognized.
CONCLUSION: The high rate of multidrug resistance combined with the widespread presence of virulence genes in P. aeruginosa isolates highlights the potential for increased infection severity, morbidity, and mortality in hospitalized patients. The substantial genetic diversity observed among isolates suggests that P. aeruginosa in this region may rapidly evolve, necessitating ongoing surveillance and more targeted antimicrobial strategies.
CLINICAL TRIAL NUMBER: Not applicable.

Keywords

References

  1. Invest Ophthalmol Vis Sci. 2004 Jun;45(6):1897-903 [PMID: 15161855]
  2. Appl Microbiol Biotechnol. 2023 Mar;107(5-6):1765-1784 [PMID: 36808279]
  3. J Chemother. 2008 Dec;20(6):714-20 [PMID: 19129069]
  4. Eur J Microbiol Immunol (Bp). 2017 Feb 27;7(1):55-64 [PMID: 28386471]
  5. Signal Transduct Target Ther. 2022 Jun 25;7(1):199 [PMID: 35752612]
  6. Infez Med. 2018 Sep 1;26(3):226-236 [PMID: 30246765]
  7. Clin Microbiol Infect. 2012 Mar;18(3):268-81 [PMID: 21793988]
  8. Folia Microbiol (Praha). 2024 Aug;69(4):805-822 [PMID: 38091178]
  9. Front Microbiol. 2015 Sep 15;6:963 [PMID: 26441897]
  10. PLoS One. 2015 Oct 02;10(10):e0139836 [PMID: 26430738]
  11. Heliyon. 2021 Sep 08;7(9):e07967 [PMID: 34604557]
  12. BMC Microbiol. 2016 Aug 24;16(1):193 [PMID: 27558582]
  13. Int J Mol Cell Med. 2015 Summer;4(3):167-73 [PMID: 26629485]
  14. PLoS One. 2017 Dec 6;12(12):e0189172 [PMID: 29211780]
  15. Microb Pathog. 2017 Jun;107:44-47 [PMID: 28315724]
  16. Jundishapur J Microbiol. 2015 Oct 21;8(10):e22345 [PMID: 26587205]
  17. J Infect Dis. 2001 Jun 15;183(12):1767-74 [PMID: 11372029]
  18. Bioresour Technol. 2011 Jan;102(2):1543-8 [PMID: 20817443]
  19. Iran J Microbiol. 2012 Sep;4(3):118-23 [PMID: 23066485]
  20. J Prev Med Hyg. 2016;57(2):E81-5 [PMID: 27582633]
  21. Expert Rev Anti Infect Ther. 2017 Sep;15(9):861-871 [PMID: 28803496]
  22. Iran Red Crescent Med J. 2014 Oct 05;16(10):e15722 [PMID: 25763199]
  23. PLoS One. 2012;7(8):e42973 [PMID: 22905192]
  24. GMS Hyg Infect Control. 2016 Feb 22;11:Doc04 [PMID: 26958458]
  25. Southeast Asian J Trop Med Public Health. 2012 Jan;43(1):116-23 [PMID: 23082561]
  26. J Infect Chemother. 2010 Oct;16(5):317-21 [PMID: 20352277]
  27. J Med Microbiol. 2008 Dec;57(Pt 12):1539-1546 [PMID: 19018027]
  28. J Med Microbiol. 2009 Sep;58(Pt 9):1133-1148 [PMID: 19528173]
  29. Infect Immun. 2004 Dec;72(12):6969-77 [PMID: 15557619]
  30. J Med Microbiol. 2004 Jan;53(Pt 1):73-81 [PMID: 14663109]
  31. Diagn Microbiol Infect Dis. 2012 Aug;73(4):354-60 [PMID: 22656912]
  32. Crit Care. 2013 May 23;17(3):146 [PMID: 23714588]
  33. J Glob Infect Dis. 2018 Oct-Dec;10(4):212-217 [PMID: 30581263]
  34. J Nepal Health Res Counc. 2019 Apr 28;17(1):109-113 [PMID: 31110388]
  35. Jundishapur J Microbiol. 2015 Aug 01;8(8):e20130 [PMID: 26468363]
  36. Jundishapur J Microbiol. 2014 Dec 08;8(1):e13783 [PMID: 25789123]
  37. Microb Pathog. 2017 Aug;109:94-98 [PMID: 28549926]
  38. J Mol Biol. 2012 Jan 20;415(3):573-83 [PMID: 22154939]
  39. Antimicrob Agents Chemother. 2007 Jun;51(6):1905-11 [PMID: 17387153]
  40. PLoS One. 2016 Oct 13;11(10):e0164622 [PMID: 27736961]
  41. Braz J Infect Dis. 2010 Sep-Oct;14(5):462-7 [PMID: 21221474]
  42. Iran J Microbiol. 2019 Feb;11(1):25-30 [PMID: 30996828]
  43. Iran J Microbiol. 2015 Jun;7(3):127-35 [PMID: 26668699]
  44. Arch Iran Med. 2016 May;19(5):353-8 [PMID: 27179168]
  45. J Med Microbiol. 2015 Feb;64(Pt 2):164-73 [PMID: 25627204]
  46. Antimicrob Agents Chemother. 2010 Mar;54(3):1160-4 [PMID: 20086165]
  47. Burns. 2013 Nov;39(7):1409-13 [PMID: 23773789]
  48. J Glob Antimicrob Resist. 2021 Sep;26:133-139 [PMID: 34129993]
  49. AMB Express. 2021 Dec 22;11(1):173 [PMID: 34936047]
  50. Pol J Microbiol. 2009;58(3):255-60 [PMID: 19899619]
  51. Diagn Microbiol Infect Dis. 2015 Nov;83(3):295-7 [PMID: 26341705]
  52. Infect Drug Resist. 2020 Feb 19;13:587-595 [PMID: 32110069]
  53. Infect Drug Resist. 2023 Feb 13;16:853-867 [PMID: 36818807]
  54. Infect Immun. 2005 Mar;73(3):1695-705 [PMID: 15731070]
  55. AMB Express. 2022 May 9;12(1):53 [PMID: 35532863]

MeSH Term

Pseudomonas aeruginosa
Iran
Humans
Drug Resistance, Multiple, Bacterial
Genetic Variation
Anti-Bacterial Agents
Virulence Factors
Pseudomonas Infections
Microbial Sensitivity Tests
Virulence
Random Amplified Polymorphic DNA Technique
Female
Male
Middle Aged
Adult
Cross Infection

Chemicals

Anti-Bacterial Agents
Virulence Factors

Word Cloud

Created with Highcharts 10.0.0aeruginosaPisolatesresistancevirulencegeneticdiversitypatientsgeneamongusingRAPDrespectivelyPseudomonashighmorbiditymortalityantimicrobialpatternshospitalizedMazandaranIran82AntimicrobialexoTexoYexoUtoxAplcHplcNalgDaprAlasBexoSstrainsDicesimilaritycoefficient9878%100%genesBACKGROUND:majorcausehealthcare-associatedinfectionsHAIsparticularlyimmunocompromisedleadingratesstudyaimedinvestigateprofilesMETHODS:September2021April2022non-duplicatecollecteddiverseclinicalsourcesIdentificationconfirmedAPI20NEbioMérieuxMarcyl'EtoileFrancesusceptibilitytestingconductedKirby-BauerdiskdiffusionmethodaccordingCLSIguidelinesassessrangeantibioticsprofileisolatedeterminedPCRevaluatedrandomamplificationpolymorphicDNAtechniqueClusteringbased≥ 85%RESULTS:totalexhibitedhighestlowesttowardticarcillin-clavulanatecolistin0%MoreoverMDRfollowingprevalencefactorobserved:identified6707%4512%obtainedprimers2722082-196-17bandsAccordinghigher85%5639clustersrecognizedCONCLUSION:ratemultidrugcombinedwidespreadpresencehighlightspotentialincreasedinfectionseveritysubstantialobservedsuggestsregionmayrapidlyevolvenecessitatingongoingsurveillancetargetedstrategiesCLINICALTRIALNUMBER:applicableprofilingmultidrug-resistantAntibioticMultidrug-resistantVirulence

Similar Articles

Cited By