Bayesian semiparametric inference in longitudinal metabolomics data.

Abhra Sarkar, Ornella Cominetti, Ivan Montoliu, Joanne Hosking, Jonathan Pinkney, Francois-Pierre Martin, David B Dunson
Author Information
  1. Abhra Sarkar: Department of Statistics and Data Sciences, University of Texas at Austin, Austin, 78712-1823, USA. abhra.sarkar@utexas.edu.
  2. Ornella Cominetti: Nestl�� Research, Lausanne, 1015, Switzerland. ornella.cominetti@rd.nestle.com.
  3. Ivan Montoliu: Nestl�� Research, Lausanne, 1015, Switzerland.
  4. Joanne Hosking: University of Plymouth, Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BT, UK.
  5. Jonathan Pinkney: University of Plymouth, Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BT, UK.
  6. Francois-Pierre Martin: Nestl�� Research, Lausanne, 1015, Switzerland.
  7. David B Dunson: Department of Statistical Science, Duke University, Durham, 27708-0251, USA.

Abstract

The article is motivated by an application to the EarlyBird cohort study aiming to explore how anthropometrics and clinical and metabolic processes are associated with obesity and glucose control during childhood. There is interest in inferring the relationship between dynamically changing and high-dimensional metabolites and a longitudinal response. Important aspects of the analysis include the selection of the important set of metabolites and the accommodation of missing data in both response and covariate values. With this motivation, we propose a flexible but parsimonious Bayesian semiparametric joint model for the outcome and the covariate generating processes, making novel use of nonparametric mean processes, latent factor models, and different classes of continuous shrinkage priors. The proposed approach efficiently addresses daunting dimensionality challenges, simplifies imputation tasks, and automates the selection of important predictors. Implementation via an efficient Markov chain Monte Carlo algorithm appropriately accounts for uncertainty in various aspects of the analysis. Simulation experiments illustrate the efficacy of the proposed methodology. The application to the EarlyBird cohort study illustrates its practical utility in enabling statistical integration of different molecular processes involved in glucose production and metabolism. From this study, we were able to show that glucose levels from 5 to 16 years of age are associated with different circulating levels of metabolites in the blood serum and can be fitted over time for a wide range of shapes of trajectories. The metabolites contributing the most to explaining glucose trajectories tend to be involved in different central energy metabolomic pathways. The methodology provides a tool to generate new hypotheses related to obesity and glucose control during childhood and adolescence.

References

  1. Biometrics. 2005 Jun;61(2):498-506 [PMID: 16011697]
  2. Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):263-9 [PMID: 22436749]
  3. Bioinformatics. 2004 Oct 12;20(15):2438-46 [PMID: 15087313]
  4. Diabetes Metab Res Rev. 2008 Sep;24(6):438-58 [PMID: 18561209]
  5. Biometrika. 2011 Jun;98(2):291-306 [PMID: 23049129]
  6. J Pediatr Endocrinol Metab. 2003 Dec;16(9):1211-24 [PMID: 14714742]
  7. J Pediatr. 1993 Sep;123(3):347-54 [PMID: 8355109]
  8. Metabolites. 2022 Feb 19;12(2): [PMID: 35208267]
  9. Angew Chem Int Ed Engl. 2010 Jul 26;49(32):5426-45 [PMID: 20629054]
  10. Psychol Methods. 2002 Jun;7(2):147-77 [PMID: 12090408]
  11. J Am Stat Assoc. 2015 Dec 1;110(512):1479-1490 [PMID: 27019543]
  12. Pediatr Diabetes. 2014 May;15(3):214-9 [PMID: 25705748]
  13. J Proteome Res. 2009 Sep;8(9):4319-27 [PMID: 19624157]
  14. Comput Struct Biotechnol J. 2013 Mar 22;4:e201301009 [PMID: 24688690]
  15. J Am Stat Assoc. 2015 Apr 4;110(511):1136-1147 [PMID: 26783375]
  16. Biom J. 2021 Jun;63(5):915-947 [PMID: 33624862]
  17. J Clin Oncol. 2012 Sep 10;30(26):3297-303 [PMID: 22649133]
  18. Biometrics. 1982 Dec;38(4):963-74 [PMID: 7168798]
  19. Stat Sin. 2010 Jan;20(1):149-165 [PMID: 20336190]
  20. World Rev Nutr Diet. 2013;106:135-41 [PMID: 23428692]
  21. Diabetes Care. 1999 Feb;22(2):345-54 [PMID: 10333956]
  22. Metabolomics. 2013 Apr;9(2):280-299 [PMID: 23543913]
  23. Nat Rev Cardiol. 2011 Sep 20;8(11):630-43 [PMID: 21931361]
  24. Test (Madr). 2009 May 1;18(1):1-43 [PMID: 21218187]
  25. Stat Methods Med Res. 2016 Apr;25(2):821-37 [PMID: 23242384]
  26. Int J Obes (Lond). 2023 Jun;47(6):453-462 [PMID: 36823293]
  27. Sci Rep. 2018 Jan 23;8(1):1393 [PMID: 29362412]
  28. J Am Stat Assoc. 2012 Dec 21;107(500):1610-1624 [PMID: 23482517]
  29. J Am Stat Assoc. 2008 Dec 1;103(484):1648-1658 [PMID: 19693282]
  30. Stat Med. 1999 Sep 15-30;18(17-18):2435-48 [PMID: 10474151]
  31. Neuropsychopharmacology. 2009 Jan;34(1):173-86 [PMID: 18843269]
  32. Metabolomics. 2010 Mar;6(1):3-17 [PMID: 20339444]

MeSH Term

Bayes Theorem
Humans
Metabolomics
Child
Longitudinal Studies
Adolescent
Female
Child, Preschool
Male
Markov Chains
Algorithms
Blood Glucose
Monte Carlo Method
Cohort Studies
Obesity

Chemicals

Blood Glucose

Word Cloud

Created with Highcharts 10.0.0glucoseprocessesmetabolitesdifferentstudyapplicationEarlyBirdcohortassociatedobesitycontrolchildhoodlongitudinalresponseaspectsanalysisselectionimportantdatacovariateBayesiansemiparametricproposedmethodologyinvolvedlevelstrajectoriesarticlemotivatedaimingexploreanthropometricsclinicalmetabolicinterestinferringrelationshipdynamicallychanginghigh-dimensionalImportantincludesetaccommodationmissingvaluesmotivationproposeflexibleparsimoniousjointmodeloutcomegeneratingmakingnovelusenonparametricmeanlatentfactormodelsclassescontinuousshrinkagepriorsapproachefficientlyaddressesdauntingdimensionalitychallengessimplifiesimputationtasksautomatespredictorsImplementationviaefficientMarkovchainMonteCarloalgorithmappropriatelyaccountsuncertaintyvariousSimulationexperimentsillustrateefficacyillustratespracticalutilityenablingstatisticalintegrationmolecularproductionmetabolismableshow516yearsagecirculatingbloodserumcanfittedtimewiderangeshapescontributingexplainingtendcentralenergymetabolomicpathwaysprovidestoolgeneratenewhypothesesrelatedadolescenceinferencemetabolomics

Similar Articles

Cited By