Shedding light on DNA methylation and its clinical implications: the impact of long-read-based nanopore technology.

Alexandra Chera, Mircea Stancu-Cretu, Nicolae Radu Zabet, Octavian Bucur
Author Information
  1. Alexandra Chera: Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
  2. Mircea Stancu-Cretu: Genomics Research and Development Institute, Bucharest, Romania. mircea.cta@gmail.com.
  3. Nicolae Radu Zabet: Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK. r.zabet@qmul.ac.uk.
  4. Octavian Bucur: Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. octavian.bucur@gmail.com.

Abstract

DNA methylation is an essential epigenetic mechanism for regulation of gene expression, through which many physiological (X-chromosome inactivation, genetic imprinting, chromatin structure and miRNA regulation, genome defense, silencing of transposable elements) and pathological processes (cancer and repetitive sequences-associated diseases) are regulated. Nanopore sequencing has emerged as a novel technique that can analyze long strands of DNA (long-read sequencing) without chemically treating the DNA. Interestingly, nanopore sequencing can also extract epigenetic status of the nucleotides (including both 5-Methylcytosine and 5-hydroxyMethylcytosine), and a large variety of bioinformatic tools have been developed for improving its detection properties. Out of all genomic regions, long read sequencing provides advantages in studying repetitive elements, which are difficult to characterize through other sequencing methods. Transposable elements are repetitive regions of the genome that are silenced and usually display high levels of DNA methylation. Their demethylation and activation have been observed in many cancers. Due to their repetitive nature, it is challenging to accurately estimate DNA methylation levels within transposable elements using short sequencing technologies. The advantage to sequence native DNA (without PCR amplification biases or harsh bisulfite treatment) and long and ultra long reads coupled with epigenetic states of the DNA allows to accurately estimate DNA methylation levels in transposable elements. This is a big step forward for epigenomic studies, and unsolved questions regarding gene expression and transposable elements silencing through DNA methylation can now be answered.

Keywords

References

  1. Genomics. 2000 May 1;65(3):293-8 [PMID: 10857753]
  2. Perit Dial Int. 2015 Dec;35(7):676-7 [PMID: 26703842]
  3. Science. 2016 Nov 18;354(6314):909-912 [PMID: 27856912]
  4. Genome Biol. 2021 Oct 18;22(1):295 [PMID: 34663425]
  5. Cancer Res. 2001 Apr 15;61(8):3225-9 [PMID: 11309270]
  6. Elife. 2022 Jul 05;11: [PMID: 35787786]
  7. Dis Model Mech. 2023 Aug 1;16(8): [PMID: 37503739]
  8. Genome Res. 2021 Jul;31(7):1280-1289 [PMID: 34140313]
  9. Clin Epigenetics. 2022 May 14;14(1):62 [PMID: 35568878]
  10. Handb Clin Neurol. 2018;147:105-123 [PMID: 29325606]
  11. Bioinformatics. 2015 Mar 15;31(6):809-16 [PMID: 25398611]
  12. Nat Rev Genet. 2020 Oct;21(10):597-614 [PMID: 32504078]
  13. Cell. 2012 Feb 17;148(4):816-31 [PMID: 22341451]
  14. Genome Biol. 2024 Mar 11;25(1):69 [PMID: 38468278]
  15. Heliyon. 2024 Aug 03;10(16):e35654 [PMID: 39224358]
  16. Cell. 2021 Apr 1;184(7):1790-1803.e17 [PMID: 33735607]
  17. Genomics Proteomics Bioinformatics. 2015 Feb;13(1):4-16 [PMID: 25743089]
  18. Nat Genet. 2015 May;47(5):469-78 [PMID: 25822089]
  19. Int J Biol Sci. 2015 Apr 08;11(5):604-17 [PMID: 25892967]
  20. J Genet Genomics. 2020 Jul 20;47(7):361-372 [PMID: 32994141]
  21. Front Genet. 2019 Nov 14;10:1150 [PMID: 31803237]
  22. Clin Epigenetics. 2018 Aug 7;10(1):105 [PMID: 30086793]
  23. Nat Struct Mol Biol. 2023 Jul;30(7):935-947 [PMID: 37308596]
  24. G3 (Bethesda). 2019 Jun 5;9(6):1893-1900 [PMID: 30988038]
  25. Nat Rev Drug Discov. 2005 Apr;4(4):275-6 [PMID: 15861567]
  26. Cell Death Discov. 2023 May 6;9(1):149 [PMID: 37149646]
  27. Mol Diagn Ther. 2020 Oct;24(5):537-555 [PMID: 32548799]
  28. Nat Rev Mol Cell Biol. 2018 Jul;19(7):436-450 [PMID: 29686419]
  29. Nucleic Acids Res. 2003 May 1;31(9):2305-12 [PMID: 12711675]
  30. Dev Growth Differ. 2019 Jun;61(5):316-326 [PMID: 31037722]
  31. Development. 2002 Apr;129(8):1983-93 [PMID: 11934864]
  32. Genome Biol. 2012 Oct 03;13(10):R83 [PMID: 23034175]
  33. Bioinformatics. 2014 Jul 1;30(13):1933-4 [PMID: 24618468]
  34. BMC Genomics. 2019 Feb 4;20(Suppl 1):78 [PMID: 30712508]
  35. Nat Rev Drug Discov. 2006 Nov;5(11):891-2 [PMID: 17117522]
  36. Mol Cell. 2020 Dec 3;80(5):915-928.e5 [PMID: 33186547]
  37. Mol Cell. 2023 Mar 2;83(5):787-802.e9 [PMID: 36758546]
  38. iScience. 2023 Nov 17;26(12):108482 [PMID: 38058305]
  39. Bioinformatics. 2013 Jul 01;29(13):1647-53 [PMID: 23658421]
  40. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1827-31 [PMID: 1542678]
  41. Annu Rev Genet. 2020 Nov 23;54:539-561 [PMID: 32955944]
  42. J Mol Biol. 1988 Oct 20;203(4):971-83 [PMID: 3210246]
  43. Oncogene. 1999 Mar 18;18(11):1957-65 [PMID: 10208417]
  44. Blood Adv. 2020 Mar 10;4(5):845-854 [PMID: 32126143]
  45. Nature. 2010 Aug 26;466(7310):1129-33 [PMID: 20639862]
  46. Nat Genet. 2019 Apr;51(4):611-617 [PMID: 30926969]
  47. Trends Genet. 2022 Jul;38(7):676-707 [PMID: 35504755]
  48. Nucleic Acids Res. 2021 Aug 20;49(14):e81 [PMID: 34019650]
  49. Commun Biol. 2023 Apr 8;6(1):382 [PMID: 37031307]
  50. Cancer Discov. 2020 Dec;10(12):1934-1949 [PMID: 32938585]
  51. Cell. 1999 Oct 29;99(3):247-57 [PMID: 10555141]
  52. PLoS Comput Biol. 2021 Oct 25;17(10):e1009524 [PMID: 34695109]
  53. Nucleic Acids Res. 2018 Nov 2;46(19):e114 [PMID: 29986099]
  54. Development. 2022 Dec 15;149(24): [PMID: 36519514]
  55. Epigenetics. 2022 Dec;17(13):1961-1975 [PMID: 35856633]
  56. Genomics Proteomics Bioinformatics. 2016 Oct;14(5):265-279 [PMID: 27646134]
  57. Int J Epidemiol. 2012 Feb;41(1):10-3 [PMID: 22186258]
  58. Swiss Med Wkly. 2013 May 28;143:w13799 [PMID: 23740463]
  59. Nat Biotechnol. 2021 Nov;39(11):1348-1365 [PMID: 34750572]
  60. Neuropsychopharmacology. 2013 Jan;38(1):23-38 [PMID: 22781841]
  61. J Biol Chem. 2007 Oct 26;282(43):31777-88 [PMID: 17724018]
  62. Nat Methods. 2020 Dec;17(12):1191-1199 [PMID: 33230324]
  63. Genome Biol. 2012 Oct 03;13(10):R87 [PMID: 23034086]
  64. Int J Mol Sci. 2021 Apr 19;22(8): [PMID: 33921911]
  65. BMC Cancer. 2002 Nov 15;2:29 [PMID: 12433278]
  66. Curr Biol. 2022 Sep 12;32(17):R904-R909 [PMID: 36099891]
  67. Cell. 2017 Sep 7;170(6):1079-1095.e20 [PMID: 28823558]
  68. Nat Neurosci. 2004 Aug;7(8):847-54 [PMID: 15220929]
  69. Int J Mol Sci. 2022 Jul 15;23(14): [PMID: 35887150]
  70. Cell. 1979 Aug;17(4):771-9 [PMID: 90553]
  71. Genes Dev. 1994 Jun 15;8(12):1463-72 [PMID: 7926745]
  72. Nature. 2015 Oct 1;526(7571):68-74 [PMID: 26432245]
  73. Commun Biol. 2022 Nov 3;5(1):1174 [PMID: 36329185]
  74. J Biol Chem. 1948 Aug;175(1):315-32 [PMID: 18873306]
  75. Genome Biol. 2022 Jul 26;23(1):163 [PMID: 35883107]
  76. Hum Mutat. 2022 Nov;43(11):1531-1544 [PMID: 36086952]
  77. Cell Genom. 2022 Dec 21;3(1):100233 [PMID: 36777186]
  78. Nat Biotechnol. 2018 Apr;36(4):338-345 [PMID: 29431738]
  79. BMC Bioinformatics. 2015 Sep 29;16:313 [PMID: 26415965]
  80. Nat Methods. 2014 Nov;11(11):1138-1140 [PMID: 25262207]
  81. Nucleic Acids Res. 2019 May 7;47(8):e46 [PMID: 30793194]
  82. Genome Biol. 2024 Feb 16;25(1):49 [PMID: 38365730]
  83. Nat Genet. 2007 Apr;39(4):457-66 [PMID: 17334365]
  84. Nature. 2001 Feb 15;409(6822):860-921 [PMID: 11237011]
  85. Int J Mol Sci. 2022 Dec 19;23(24): [PMID: 36555863]
  86. Trends Genet. 2022 Mar;38(3):246-257 [PMID: 34711425]
  87. Nat Methods. 2021 May;18(5):491-498 [PMID: 33820988]
  88. Bioinformatics. 2014 Sep 1;30(17):2414-22 [PMID: 24836530]
  89. Essays Biochem. 2019 Dec 20;63(6):639-648 [PMID: 31755932]
  90. Nat Commun. 2024 Jul 4;15(1):5631 [PMID: 38965210]
  91. Nature. 2004 Oct 21;431(7011):931-45 [PMID: 15496913]
  92. Essays Biochem. 2019 Dec 20;63(6):717-726 [PMID: 31782496]
  93. Genome Biol. 2022 Jul 15;23(1):158 [PMID: 35841107]
  94. Genes Environ. 2020 Jul 30;42:24 [PMID: 32760472]
  95. Eur J Med Genet. 2023 Feb;66(2):104690 [PMID: 36587803]
  96. Nat Commun. 2022 Sep 29;13(1):5566 [PMID: 36175411]
  97. Methods Mol Biol. 2015;1315:291-313 [PMID: 26103907]
  98. Front Med (Lausanne). 2023 May 04;10:1187430 [PMID: 37215722]
  99. J Thorac Oncol. 2011 Oct;6(10):1649-57 [PMID: 21857254]
  100. Biosensors (Basel). 2021 Jun 30;11(7): [PMID: 34208844]
  101. Genome Biol. 2024 Apr 26;25(1):107 [PMID: 38671502]
  102. Innovation (Camb). 2021 Aug 11;2(4):100153 [PMID: 34901902]
  103. Proc Natl Acad Sci U S A. 2012 May 8;109(19):7332-7 [PMID: 22523239]
  104. Nucleic Acids Res. 2014 Apr;42(8):e69 [PMID: 24561809]
  105. Am J Hum Genet. 2013 Oct 3;93(4):687-96 [PMID: 24094745]
  106. Clin Cancer Res. 2002 Dec;8(12):3782-7 [PMID: 12473590]
  107. Clin Chem. 2010 Jul;56(7):1098-106 [PMID: 20472822]
  108. Clin Epigenetics. 2022 Aug 27;14(1):107 [PMID: 36030244]

Grants

  1. PN-III-P4-ID-PCE-2020-2027/Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

MeSH Term

Animals
Humans
5-Methylcytosine
DNA Methylation
DNA Transposable Elements
Epigenesis, Genetic
Nanopore Sequencing
Nanopores
Neoplasms
Sequence Analysis, DNA

Chemicals

5-Methylcytosine
DNA Transposable Elements

Word Cloud

Created with Highcharts 10.0.0DNAsequencingmethylationelementstransposablerepetitivelongepigeneticcanlevelsregulationgeneexpressionmanygenomesilencingNanoporewithoutnanoporeregionsaccuratelyestimateessentialmechanismphysiologicalX-chromosomeinactivationgeneticimprintingchromatinstructuremiRNAdefensepathologicalprocessescancersequences-associateddiseasesregulatedemergednoveltechniqueanalyzestrandslong-readchemicallytreatingInterestinglyalsoextractstatusnucleotidesincluding5-Methylcytosine5-hydroxyMethylcytosinelargevarietybioinformatictoolsdevelopedimprovingdetectionpropertiesgenomicreadprovidesadvantagesstudyingdifficultcharacterizemethodsTransposablesilencedusuallydisplayhighdemethylationactivationobservedcancersDuenaturechallengingwithinusingshorttechnologiesadvantagesequencenativePCRamplificationbiasesharshbisulfitetreatmentultrareadscoupledstatesallowsbigstepforwardepigenomicstudiesunsolvedquestionsregardingnowansweredSheddinglightclinicalimplications:impactlong-read-basedtechnologyEpigenomicsLong-readMethylome

Similar Articles

Cited By