Comparison analysis between standard polysomnographic data and in-ear-electroencephalography signals: a preliminary study.

Gianpaolo Palo, Luigi Fiorillo, Giuliana Monachino, Michal Bechny, Michel W��lti, Elias Meier, Francesca Pentimalli Biscaretti di Ruffia, Mark Melnykowycz, Athina Tzovara, Valentina Agostini, Francesca Dalia Faraci
Author Information
  1. Gianpaolo Palo: Department of Innovative Technologies, Institute of Digital Technologies for Personalized Healthcare (MeDiTech), University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland.
  2. Luigi Fiorillo: Department of Innovative Technologies, Institute of Digital Technologies for Personalized Healthcare (MeDiTech), University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland. ORCID
  3. Giuliana Monachino: Department of Innovative Technologies, Institute of Digital Technologies for Personalized Healthcare (MeDiTech), University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland.
  4. Michal Bechny: Department of Innovative Technologies, Institute of Digital Technologies for Personalized Healthcare (MeDiTech), University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland.
  5. Michel W��lti: IDUN Technologies AG, Glattpark, Switzerland.
  6. Elias Meier: IDUN Technologies AG, Glattpark, Switzerland.
  7. Francesca Pentimalli Biscaretti di Ruffia: IDUN Technologies AG, Glattpark, Switzerland.
  8. Mark Melnykowycz: IDUN Technologies AG, Glattpark, Switzerland.
  9. Athina Tzovara: Institute of Computer Science, University of Bern, Bern, Switzerland.
  10. Valentina Agostini: Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy. ORCID
  11. Francesca Dalia Faraci: Department of Innovative Technologies, Institute of Digital Technologies for Personalized Healthcare (MeDiTech), University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland.

Abstract

Study Objectives: Polysomnography (PSG) currently serves as the benchmark for evaluating sleep disorders. Its discomfort makes long-term monitoring unfeasible, leading to bias in sleep quality assessment. Hence, less invasive, cost-effective, and portable alternatives need to be explored. One promising contender is the in-ear-electroencephalography (EEG) sensor. This study aims to establish a methodology to assess the similarity between the single-channel in-ear-EEG and standard PSG derivations.
Methods: The study involves 4-hour signals recorded from 10 healthy subjects aged 18-60 years. Recordings are analyzed following two complementary approaches: (1) a hypnogram-based analysis aimed at assessing the agreement between PSG and in-ear-EEG-derived hypnograms; and (2) a feature- and analysis-based on time- and frequency-domain feature extraction, unsupervised feature selection, and definition of Feature-based Similarity Index via Jensen-Shannon Divergence (JSD-FSI).
Results: We find large variability between PSG and in-ear-EEG hypnograms scored by the same sleep expert according to Cohen's kappa metric, with significantly greater agreements for PSG scorers than for in-ear-EEG scorers ( < .001) based on Fleiss' kappa metric. On average, we demonstrate a high similarity between PSG and in-ear-EEG signals in terms of JSD-FSI-0.79��������0.06-awake, 0.77��������0.07-nonrapid eye movement, and 0.67��������0.10-rapid eye movement-and in line with the similarity values computed independently on standard PSG channel combinations.
Conclusions: In-ear-EEG is a valuable solution for home-based sleep monitoring; however, further studies with a larger and more heterogeneous dataset are needed.

Keywords

References

  1. Brain Sci. 2023 Aug 14;13(8): [PMID: 37626557]
  2. IEEE Trans Biomed Eng. 2006 Nov;53(11):2282-8 [PMID: 17073334]
  3. Sensors (Basel). 2021 Feb 24;21(5): [PMID: 33668118]
  4. J Neural Eng. 2009 Aug;6(4):046005 [PMID: 19556679]
  5. Med Biol Eng Comput. 2010 Jun;48(6):561-72 [PMID: 20405229]
  6. Biomed Eng Online. 2017 Sep 19;16(1):111 [PMID: 28927417]
  7. Cogn Neurodyn. 2017 Jun;11(3):217-231 [PMID: 28559952]
  8. Sleep Breath. 2021 Sep;25(3):1693-1705 [PMID: 33219908]
  9. Stat Med. 2003 Mar 30;22(6):913-30 [PMID: 12627409]
  10. Elife. 2021 Oct 14;10: [PMID: 34648426]
  11. Sci Rep. 2019 Nov 14;9(1):16824 [PMID: 31727953]
  12. PLOS Digit Health. 2022 Oct 27;1(10):e0000134 [PMID: 36812563]
  13. J Clin Sleep Med. 2022 Jan 1;18(1):193-202 [PMID: 34310277]
  14. Sleep Med Rev. 2019 Dec;48:101204 [PMID: 31491655]
  15. Artif Intell Med. 2011 Oct;53(2):97-106 [PMID: 21835600]
  16. Front Digit Health. 2021 Jun 30;3:688122 [PMID: 34713159]
  17. Psychiatry Res. 1989 May;28(2):193-213 [PMID: 2748771]
  18. Electroencephalogr Clin Neurophysiol. 1970 Sep;29(3):306-10 [PMID: 4195653]
  19. IEEE Trans Neural Syst Rehabil Eng. 2020 Sep;28(9):1955-1965 [PMID: 32746326]
  20. Comput Biol Med. 2002 Jan;32(1):37-47 [PMID: 11738639]
  21. J Sleep Res. 2019 Apr;28(2):e12786 [PMID: 30421469]
  22. IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):84-95 [PMID: 29324406]
  23. Sleep. 2023 May 10;46(5): [PMID: 36762998]
  24. Entropy (Basel). 2019 May 28;21(6): [PMID: 33267255]
  25. IEEE J Transl Eng Health Med. 2017 Jun 26;5:2800108 [PMID: 29018638]
  26. IEEE Trans Biomed Eng. 2020 Jan;67(1):203-212 [PMID: 31021747]
  27. Sleep Sci. 2016 Apr-Jun;9(2):69-72 [PMID: 27656268]
  28. J Sleep Res. 2020 Dec;29(6):e12921 [PMID: 31621976]
  29. Front Aging Neurosci. 2022 Apr 13;14:865558 [PMID: 35493944]
  30. Entropy (Basel). 2020 Jan 24;22(2): [PMID: 33285915]
  31. Int J Neurosci. 1990 May;52(1-2):29-37 [PMID: 2265922]
  32. IEEE Pulse. 2012 Nov-Dec;3(6):32-42 [PMID: 23247157]
  33. PLoS One. 2017 Dec 8;12(12):e0188756 [PMID: 29220351]
  34. Front Neurosci. 2023 Feb 01;17:987578 [PMID: 36816118]
  35. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4751-4754 [PMID: 28269332]
  36. ACS Synth Biol. 2023 Aug 18;12(8):2367-2381 [PMID: 37467372]

Word Cloud

Created with Highcharts 10.0.0PSGsleepin-ear-EEGstudysimilaritystandardmonitoringin-ear-electroencephalographysignalsanalysishypnogramsfeaturekappametricscorers0eyeStudyObjectives:Polysomnographycurrentlyservesbenchmarkevaluatingdisordersdiscomfortmakeslong-termunfeasibleleadingbiasqualityassessmentHencelessinvasivecost-effectiveportablealternativesneedexploredOnepromisingcontenderEEGsensoraimsestablishmethodologyassesssingle-channelderivationsMethods:involves4-hourrecorded10healthysubjectsaged18-60yearsRecordingsanalyzedfollowingtwocomplementaryapproaches:1hypnogram-basedaimedassessingagreementin-ear-EEG-derived2feature-analysis-basedtime-frequency-domainextractionunsupervisedselectiondefinitionFeature-basedSimilarityIndexviaJensen-ShannonDivergenceJSD-FSIResults:findlargevariabilityscoredexpertaccordingCohen'ssignificantlygreateragreements<001basedFleiss'averagedemonstratehightermsJSD-FSI-079��������006-awake77��������007-nonrapidmovement67��������010-rapidmovement-andlinevaluescomputedindependentlychannelcombinationsConclusions:In-ear-EEGvaluablesolutionhome-basedhoweverstudieslargerheterogeneousdatasetneededComparisonpolysomnographicdatasignals:preliminarymachinelearningmultisource-scoreddatabasesstagingwearables

Similar Articles

Cited By

No available data.