Legume content estimation from UAV image in grass-legume meadows: comparison methods based on the UAV coverage vs. field biomass.

Kensuke Kawamura, Tsuneki Tanaka, Taisuke Yasuda, Shoji Okoshi, Masaaki Hanada, Kazuya Doi, Toshiya Saigusa, Takanori Yagi, Kenji Sudo, Kenji Okumura, Jihyun Lim
Author Information
  1. Kensuke Kawamura: Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido, Japan. kamuken@obihiro.ac.jp.
  2. Tsuneki Tanaka: Dairy Research Center, Hokkaido Research Organization (HRO), Nakashibetsu, Hokkaido, Japan.
  3. Taisuke Yasuda: Mount Fuji Research Institute, Yamanashi Prefectural Government, Yamanashi, Japan.
  4. Shoji Okoshi: Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido, Japan.
  5. Masaaki Hanada: Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido, Japan.
  6. Kazuya Doi: Rakuno Gakuen University, 582 Bunkyodai-Midori, Ebetsu, Hokkaido, Japan.
  7. Toshiya Saigusa: Rakuno Gakuen University, 582 Bunkyodai-Midori, Ebetsu, Hokkaido, Japan.
  8. Takanori Yagi: Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Sapporo, Hokkaido, Japan.
  9. Kenji Sudo: Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Sapporo, Hokkaido, Japan.
  10. Kenji Okumura: Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Sapporo, Hokkaido, Japan.
  11. Jihyun Lim: Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.

Abstract

Legume content (LC) in grass-legume mixtures is important for assessing forage quality and optimizing fertilizer application in meadow fields. This study focuses on differences in LC measurements obtained from unmanned aerial vehicle (UAV) images and ground surveys based on dry matter assessments in seven meadow fields in Hokkaido, Japan. We propose a UAV-based LC (LC) estimation and mapping method using a land cover map from a simple linear iterative clustering (SLIC) algorithm and a random forest (RF) classifier. The SLIC-RF classification achieved a high accuracy level for four different ground cover types (grasses, legumes, weeds, and background) in seven distinct meadows with an overall accuracy of 91.4% and an F score of 91.5%. By applying SLIC-RF to eliminate plots with low classification accuracy, we demonstrate the necessity of achieving a minimum classification accuracy of 0.82 for precise LC estimation. A non-linear relationship was revealed between the LC and LC influenced by surface sward height (SSH, height of plant canopy). The results indicate a higher accuracy of the LC estimation when SSH levels were lower, particularly when recommending SSH levels below 40 cm for optimal LC estimation. This highlights the effectiveness of UAV-based remote sensing for assessing early growth or grazing in pastures with low SSH.

References

  1. Front Plant Sci. 2023 May 09;14:1176150 [PMID: 37229108]
  2. Sci Rep. 2021 Feb 8;11(1):3336 [PMID: 33558558]
  3. IEEE Trans Pattern Anal Mach Intell. 2012 Nov;34(11):2274-82 [PMID: 22641706]
  4. Front Plant Sci. 2021 Jan 21;11:603921 [PMID: 33597959]
  5. Sensors (Basel). 2012;12(1):453-80 [PMID: 22368479]
  6. Grass Forage Sci. 2014 Jun;69(2):206-228 [PMID: 26300574]
  7. PLoS One. 2015 Dec 16;10(12):e0144813 [PMID: 26672990]
  8. Sci Rep. 2021 Feb 15;11(1):3835 [PMID: 33589673]
  9. Front Plant Sci. 2022 Jan 11;12:763479 [PMID: 35087545]
  10. Nat Plants. 2022 Aug;8(8):923-929 [PMID: 35941217]

MeSH Term

Fabaceae
Biomass
Poaceae
Grassland
Remote Sensing Technology
Algorithms
Japan

Word Cloud

Created with Highcharts 10.0.0LCestimationaccuracySSHUAVclassificationLegumecontentgrass-legumeassessingmeadowfieldsgroundbasedsevenUAV-basedcoverSLIC-RF91lowheightlevelsmixturesimportantforagequalityoptimizingfertilizerapplicationstudyfocusesdifferencesmeasurementsobtainedunmannedaerialvehicleimagessurveysdrymatterassessmentsHokkaidoJapanproposemappingmethodusinglandmapsimplelineariterativeclusteringSLICalgorithmrandomforestRFclassifierachievedhighlevelfourdifferenttypesgrasseslegumesweedsbackgrounddistinctmeadowsoverall4%Fscore5%applyingeliminateplotsdemonstratenecessityachievingminimum082precisenon-linearrelationshiprevealedinfluencedsurfaceswardplantcanopyresultsindicatehigherlowerparticularlyrecommending40 cmoptimalhighlightseffectivenessremotesensingearlygrowthgrazingpasturesimagemeadows:comparisonmethodscoveragevsfieldbiomass

Similar Articles

Cited By