Cost of Carbon in the Total Cost of a Healthcare Procedure: Example of Micro-Costing Study in a French Setting.

Paul-Simon Pugliesi, Hervé Frick, Stéphanie Guillot, Karine Ferrare, Catherine Renzullo, Alexandre Benoist, Serge Ribes, Guillaume Beltramo, Thomas Maldiney, Romain Ter Schiphorst, Caroline Abdul Malak, Adrien Bevand, Laurie Marrauld, Catherine Lejeune
Author Information
  1. Paul-Simon Pugliesi: Department of Intensive Care, William Morey Hospital, Chalon sur Saône, France. PaulSimon.Pugliesi@ch-chalon71.fr. ORCID
  2. Hervé Frick: Department of Sustainable Development, William Morey Hospital, Chalon sur Saône, France.
  3. Stéphanie Guillot: Department of Anesthesia and Operating Rooms, William Morey Hospital, Chalon sur Saône, France.
  4. Karine Ferrare: Department of Anesthesia and Operating Rooms, William Morey Hospital, Chalon sur Saône, France.
  5. Catherine Renzullo: Pharmacy, William Morey Hospital, Chalon sur Saône, France.
  6. Alexandre Benoist: Dept of Biomedical Engineering, William Morey Hospital, Chalon sur Saône, France.
  7. Serge Ribes: Department of Sustainable Development, William Morey Hospital, Chalon sur Saône, France.
  8. Guillaume Beltramo: INSERM U1231, Dijon, France.
  9. Thomas Maldiney: Department of Intensive Care, William Morey Hospital, Chalon sur Saône, France.
  10. Romain Ter Schiphorst: Department of Intensive Care, William Morey Hospital, Chalon sur Saône, France.
  11. Caroline Abdul Malak: Department of Intensive Care, William Morey Hospital, Chalon sur Saône, France.
  12. Adrien Bevand: Dept of Orthopedic and Traumatological Surgery, William Morey Hospital, Chalon sur Saône, France.
  13. Laurie Marrauld: University of Rennes, EHESP, CNRS, Inserm, Arènes - UMR 6051, RSMS (Health Services and Management Research) - U 1309, 35000, Rennes, France.
  14. Catherine Lejeune: CHU Dijon Bourgogne, Inserm, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, 7 bd Jeanne d'Arc, BP 87900, 21000, Dijon, France.

Abstract

BACKGROUND: Economic evaluation aims to compare the costs and results of health strategies to inform public decision making. Although sometimes suggested, until now no national evaluation agency has recommended formally incorporating the cost of greenhouse gas (GHG) emissions generated by health interventions into the estimation of healthcare costs.
OBJECTIVE: The objective of this study was to test and discuss the feasibility of estimating and including the contribution of GHG emissions cost to the total cost of a surgical intervention, with the example of robot-assisted total knee arthroplasty (RTA), using a micro-costing approach.
METHODS: The study was conducted in June 2022 at the William Morey Hospital (France). Data regarding all of the resources (labor, medical equipment, consumables), as well as energy consumption, staff commuting and waste treatment were collected and valued from the hospital point of view. Greenhouse gas emissions were valued using a cost-effectiveness approach. Several sensitivity analyses were performed.
RESULTS: The mean cost per patient of an RTA was estimated to be €4755.65, of which €152.64 (3.21 %) would be attributable to GHG emissions. The contribution of GHG emissions in the overall cost of a health intervention was highly dependent on the convention used for the price of carbon.
CONCLUSION: Despite persistent theoretical and practical challenges, adding the estimation of GHG emission costs in the economic evaluation of health interventions may provide institutional decision makers with information that allows them to allocate the public healthcare resources more efficiently.

References

  1. OECD. Health at a glance 2021: OECD indicators. Paris: OECD Publishings; 2021. https://doi.org/10.1787/ae3016b9-en . [DOI: 10.1787/ae3016b9-en]
  2. Jeantet M, Lopez A. Évaluation médico-économique en santé. IGAS Report No.: 2014–066R. 2014. Available from: https://www.igas.gouv.fr/IMG/pdf/2014-066R_-_Rapport_DEF.pdf . Accessed 12 Jun 2024.
  3. Haute Autorité de Santé. Choix méthodologiques pour l’évaluation économique à la HAS. 2020. Available from: https://www.has-sante.fr/jcms/r_1499251/fr/choix-methodologiques-pour-l-evaluation-economique-a-la-has . Accessed 12 Jun 2024
  4. Institue for Quality and Efficiency in Health Care (IQWIG). General Methods v4.2. 2015. https://www.iqwig.de/methoden/iqwig_general_methods_version_204-2.pdf . Accessed 12 Jun 2024.
  5. National Institute for Health and Care Excellence. NICE health technology evaluations: the manual. 2022. https://www.nice.org.uk/process/pmg36/resources/nice-health-technology-evaluations-the-manual-pdf-72286779244741 . Accessed 12 Jun 2024.
  6. European Network for Health Technology Assessment. EUnetHTA methodological guideline - Methods for health economic evaluations. 2015. Available from: https://www.eunethta.eu/eunethta-methodological-guideline-methods-for-health-economic-evaluations/ . Accessed 12 Jun 2024
  7. Lenzen M, Malik A, Li M, Fry J, Weisz H, Pichler PP, et al. The environmental footprint of health care: a global assessment. Lancet Planet Health. 2020. https://doi.org/10.1016/S2542-5196(20)30121-2 . [DOI: 10.1016/S2542-5196(20)30121-2]
  8. Health Care Without Harm. Health care climate footprint report. 2019. Available from: https://noharm-europe.org/sites/default/files/documents-files/6718/French_HealthCaresClimateFootprint_091619_web.pdf . Accessed 12 Jun 2024
  9. The Shift Project. Décarboner la Santé pour soigner durablement. 2021. Available from: https://theshiftproject.org/wp-content/uploads/2023/04/180423-TSP-PTEF-Rapport-final-Sante_v2.pdf . Accessed 12 Jun 2024
  10. Chen-Xu J, Corda M, Varga O, Viegas S. Health burden and costs attributable to the carbon footprint of the health sector in the European Union. Environ Int. 2024. https://doi.org/10.1016/j.envint.2024.108828 . [DOI: 10.1016/j.envint.2024.108828]
  11. Hensher M. Incorporating environmental impacts into the economic evaluation of health care systems: perspectives from ecological economics. Resour Conserv Recycl. 2020. https://doi.org/10.1016/j.resconrec.2019.104623 . [DOI: 10.1016/j.resconrec.2019.104623]
  12. Pugliesi PS, Marrauld L, Lejeune C. Cost of carbon in the total cost of healthcare procedures: a methodological challenge. Appl Health Econ Health Policy. 2024. https://doi.org/10.1007/s40258-024-00890-4 . [DOI: 10.1007/s40258-024-00890-4]
  13. Williams JTW, Bell KJL, Morton RL, Dieng M. Methods to include environmental impacts in health economic evaluations and health technology assessments: a scoping review. Value Health. 2024. https://doi.org/10.1016/j.jval.2024.02.019 . [DOI: 10.1016/j.jval.2024.02.019]
  14. Desterbecq C, Tubeuf S. Inclusion of environmental spillovers in applied economic evaluations of healthcare products. Value Health. 2023. https://doi.org/10.1016/j.jval.2023.03.008 . [DOI: 10.1016/j.jval.2023.03.008]
  15. de Preux L, Rizmie D. Beyond financial efficiency to support environmental sustainability in economic evaluations. Future Healthc J. 2018. https://doi.org/10.7861/futurehosp.5-2-103 . [DOI: 10.7861/futurehosp.5-2-103]
  16. Ortsäter G, Borgström F, Soulard S, Miltenburger C. A budget impact model to estimate the environmental impact of adopting RESPIMAT re-usable in the Nordics and Benelux. Adv Ther. 2019. https://doi.org/10.1007/s12325-019-01114-1 . [DOI: 10.1007/s12325-019-01114-1]
  17. Ortsäter G, Borgström F, Baldwin M, Miltenburger C. Incorporating the environmental impact into a budget impact analysis: the example of adopting RESPIMAT Re-usable inhaler. Appl Health Econ Health Policy. 2020. https://doi.org/10.1007/s40258-019-00540-0 . [DOI: 10.1007/s40258-019-00540-0]
  18. Kponee-Shovein K, Marvel J, Ishikawa R, Choubey A, Kaur H, Ngom K, et al. Impact of choice of inhalers for asthma care on global carbon footprint and societal costs: a long-term economic evaluation. J Med Econ. 2022. https://doi.org/10.1080/13696998.2022.2088196 . [DOI: 10.1080/13696998.2022.2088196]
  19. Gold MR, Siegel JE, Russell LB, Weinstein MC. Cost-effectiveness in health and medicine. New-York: Oxford Univesity Press; 1996. [DOI: 10.1093/oso/9780195108248.001.0001]
  20. Frick KD. Microcosting quantity data collection methods. Med Care. 2009. https://doi.org/10.1097/MLR.0b013e31819bc064 . [DOI: 10.1097/MLR.0b013e31819bc064]
  21. Cunha MF, Pellino G. Environmental effects of surgical procedures and strategies for sustainable surgery. Nat Rev Gastroenterol Hepatol. 2023. https://doi.org/10.1038/s41575-022-00716-5 . [DOI: 10.1038/s41575-022-00716-5]
  22. Rizan C, Steinbach I, Nicholson R, Lillywhite R, Reed M, Bhutta MF. The carbon footprint of surgical operations: a systematic review. Ann Sur. 2020. https://doi.org/10.1097/SLA.0000000000003951 . [DOI: 10.1097/SLA.0000000000003951]
  23. Erivan R, Tardieu A, Villatte G, Ollivier M, Jacquet C, Descamps S, et al. Knee surgery trends and projections in France from 2008 to 2070. Orthop Traumatol Surg Res OTSR. 2020. https://doi.org/10.1016/j.otsr.2020.02.018 . [DOI: 10.1016/j.otsr.2020.02.018]
  24. Le Stum M, Gicquel T, Dardenne G, Le Goff-Pronost M, Stindel E, Clavé A. Total knee arthroplasty in France: male-driven rise in procedures in 2009–2019 and projections for 2050. Orthop Traumatol Surg Res OTSR. 2022. https://doi.org/10.1016/j.otsr.2022.103463 . [DOI: 10.1016/j.otsr.2022.103463]
  25. da Casa C, Fidalgo H, Nieto J, Cano-Lallave E, Blanco JF. Total knee arthroplasty for the oldest old. Geriatrics. 2021. https://doi.org/10.3390/geriatrics6030075 . [DOI: 10.3390/geriatrics6030075]
  26. Martin JR, Jennings JM, Dennis DA. Morbid obesity and total knee arthroplasty: a growing problem. JAAOS - J Am Acad Orthop Surg. 2017. https://doi.org/10.5435/JAAOS-D-15-00684 . [DOI: 10.5435/JAAOS-D-15-00684]
  27. Skou ST, Roos EM, Laursen MB, Rathleff MS, Arendt-Nielsen L, Simonsen O, et al. A randomized, controlled trial of total knee replacement. N Engl J Med. 2015. https://doi.org/10.1056/NEJMoa1505467 . [DOI: 10.1056/NEJMoa1505467]
  28. MacNeill AJ, Lillywhite R, Brown CJ. The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems. Lancet Planet Health. 2017. https://doi.org/10.1016/S2542-5196(17)30162-6 . [DOI: 10.1016/S2542-5196(17)30162-6]
  29. Batailler C, Fernandez A, Swan J, Servien E, Haddad FS, Catani F, et al. MAKO CT-based robotic arm-assisted system is a reliable procedure for total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthros. 2021. https://doi.org/10.1007/s00167-020-06283-z . [DOI: 10.1007/s00167-020-06283-z]
  30. Haute Autorité de la Santé. Construction d’un outil de micro-costing en chirurgie ambulatoire. Méthodologie et résultats des sites pilotes (2015). Available from: https://www.has-sante.fr/upload/docs/application/pdf/2015-03/methodes_et_outils_construction_dun_outil_de_micro-costing_en_chirurgie_ambulatoire.pdf . Accessed 12 Jun 2024.
  31. Mogyorosy Z, Smith PC. The main methodological issues in costing health care services - a literature review. CHE Research Papers 7, University of York (2005). Available from: https://econpapers.repec.org/paper/chyrespap/7cherp.htm . Accessed 12 Jun 2024.
  32. French ministry for ecological transition, French agency for ecological transition (ADEME). Méthode pour la réalisation des bilans d’émissions de gaz à effet de serre (Version 5) (2022). Available from: https://www.ecologie.gouv.fr/sites/default/files/methodo_BEGES_decli_07.pdf . Accessed 12 Jun 2024.
  33. French agency for ecological transition (ADEME). Réalisation d’un bilan des émissions de gaz à effet de serre : secteurs établissements sanitaires et médico-sociaux. La librairie ADEME (2020). Available from: https://librairie.ademe.fr/changement-climatique-et-energie/764-realisation-d-un-bilan-des-emissions-de-gaz-a-effet-de-serre-secteurs-etablissements-sanitaires-et-medico-sociaux.html . Accessed 12 Jun 2024.
  34. Camille Delaie. Impact écologique de la réalisation d’une prothèse totale de genou : analyse du cycle de vie de la matière première jusqu’aux implants définitifs. Sciences du Vivant (2021). Available from: https://dumas.ccsd.cnrs.fr/dumas-03475076 . Accessed 12 Jun 2024.
  35. French agency pour ecological transition (ADEME). Base carbone v23.1. Available from: https://base-empreinte.ademe.fr/ . Accessed 15 Apr 2024.
  36. Germain JM, Lellouch T. The social cost of global warming and sustainability indicators: lessons from an application to france. Economie et Statistique / Economics and Statistics. 2020. Available from: https://www.insee.fr/en/statistiques/4770154?sommaire=4770271 . Accessed 12 Jun 2024.
  37. France Stratégie. La valeur de l’action pour le climat. Une valeur tutélaire du carbone pour évaluer les investissements et les politiques publiques. 2019. https://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/atoms/files/fs-2019-rapport-la-valeur-de-laction-pour-le-climat_0.pdf . Accessed 12 Jun 2024.
  38. Tan SS, Rutten FFH, van Ineveld BM, Redekop WK, Hakkaart-van Roijen L. Comparing methodologies for the cost estimation of hospital services. Eur J Health Econ. 2009. https://doi.org/10.1007/s10198-008-0101-x . [DOI: 10.1007/s10198-008-0101-x]
  39. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the economic evaluation of health care programmes. Fourth Edition, Fourth Edition. Oxford, New York: Oxford University Press (2015). 464 p.
  40. European Environment Agency. Greenhouse gas emission intensity of electricity generation in Europe. Available from: https://www.eea.europa.eu/ims/greenhouse-gas-emission-intensity-of-1 . Accessed 12 Jun 2024.
  41. The Shift Project. Décarboner la santé pour soigner durablement : édition 2023 du rapport du Shift Project (2023). Available from: https://theshiftproject.org/article/decarboner-sante-rapport-2023/ . Accessed 12 Jun 2024.
  42. OECD: The social cost of carbon. Chapter 14 : Cost-Benefit Analysis and the Environment Further Developments and Policy Use. Editions OCDE, Paris (2018). https://doi.org/10.1787/9789264085169-en .
  43. Intergovernmental Panel on Climate Change. Special Report : Global Warming of 1.5°C. Section 2.5.2.1 (2018). Available from: https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SR15_Chapter_2_LR.pdf . Accessed 12 Jun 2024.
  44. Koopmanschap MA. Cost-of-illness studies. PharmacoEconomics. 1998.

MeSH Term

Humans
France
Greenhouse Gases
Cost-Benefit Analysis
Arthroplasty, Replacement, Knee
Health Care Costs
Greenhouse Effect

Chemicals

Greenhouse Gases

Word Cloud

Created with Highcharts 10.0.0costGHGemissionshealthevaluationcostspublicdecisiongasinterventionsestimationhealthcarestudycontributiontotalinterventionRTAusingapproachresourcesvaluedCostBACKGROUND:EconomicaimscompareresultsstrategiesinformmakingAlthoughsometimessuggestednownationalagencyrecommendedformallyincorporatinggreenhousegeneratedOBJECTIVE:objectivetestdiscussfeasibilityestimatingincludingsurgicalexamplerobot-assistedkneearthroplastymicro-costingMETHODS:conductedJune2022WilliamMoreyHospitalFranceDataregardinglabormedicalequipmentconsumableswellenergyconsumptionstaffcommutingwastetreatmentcollectedhospitalpointviewGreenhousecost-effectivenessSeveralsensitivityanalysesperformedRESULTS:meanperpatientestimated€475565€15264321%attributableoverallhighlydependentconventionusedpricecarbonCONCLUSION:DespitepersistenttheoreticalpracticalchallengesaddingemissioneconomicmayprovideinstitutionalmakersinformationallowsallocateefficientlyCarbonTotalHealthcareProcedure:ExampleMicro-CostingStudyFrenchSetting

Similar Articles

Cited By