Alterations in the autonomic and haemodynamic response to prolonged high-intensity endurance exercise in individuals with coronary artery calcification.

Jakob Svane, Tomasz Wiktorski, Trygve Eftestøl, Stein Ørn
Author Information
  1. Jakob Svane: Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway. ORCID
  2. Tomasz Wiktorski: Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway.
  3. Trygve Eftestøl: Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway.
  4. Stein Ørn: Division of Cardiology, Stavanger University Hospital, Stavanger, Norway.

Abstract

Endurance exercise is associated with increased life duration and improved life quality. Paradoxically, high exercise intensity is also associated with increased coronary artery calcification (CAC) and a small but significant increased risk of adverse cardiac events during exercise. The mechanisms underlying the development of CAC during prolonged high-intensity endurance exercise are unknown. This study aims to determine if there are differences in cardiovascular haemodynamic measures and heart rate variability (HRV) in individuals with (CAC) and without CAC (CAC). Hemodynamic measures from 56 healthy, middle-aged (median [interquartile range] 51 [43-58] years) individuals (41 men/15 women) participating in a 91 km [251.2 [217.2-271.6] min] leisure sport mountain bike race were included in this study. Twenty-five participants (20 men/5 women) were classified as CAC based on coronary computed tomographic assessment. Haemodynamic measures and HRV were quantified at the top of the hardest hill (THH) during the last quarter of the race. At the top of THH, CAC individuals had significantly higher systolic blood pressure (SBP) (235 [225-245] mmHg vs. 220 [193-238] mmHg, P = 0.008), higher diastolic blood pressure (DBP) (105 [95-110] mmHg vs. 95 [85-110] mmHg, P = 0.006), higher pulse pressure (130 [125-140] mmHg vs. 123 [110-130] mmHg, P = 0.039), higher mean rate pressure product (33,882 [30,872-35,053] bpm × mmHg vs. 31,028 [27,392-33,047] bpm × mmHg, P = 0.028), and larger increase in DBP from baseline (20 [20-30] mmHg vs. 10 [0-20] mmHg, P = 0.001), compared with CAC individuals. Further, CAC participants showed a significant reduction in the low-frequency component of HRV (HRV) (6.3 [2.4-11.5] ms vs. 12.4 [6.8-20.2] ms, P = 0.044). In multivariable analysis, HRV was an independent predictor of the presence of CAC even after adjusting for established risk factors of atherosclerosis: age, sex, body mass index, maximum heart rate, , smoking, resting SBP and resting DBP. CAC individuals had significant alterations in haemodynamic measures and HRV following prolonged high-intensity endurance exercise compared with individuals without CAC. HRV was an independent predictor of CAC, suggesting an adverse autonomic response to high-intensity endurance exercise in individuals with CAC.

Keywords

References

  1. Aengevaeren, V. L., Mosterd, A., Bakker, E. A., Braber, T. L., Nathoe, H. M., Sharma, S., Thompson, P. D., Velthuis, B. K., & Eijsvogels, T. M. (2023). Exercise volume versus intensity and the progression of coronary atherosclerosis in middle‐aged and older athletes: Findings from the marc‐2 study. Circulation, 147(13), 993–1003.
  2. Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat‐to‐beat cardiovascular control. Science, 213(4504), 220–222.
  3. Baek, H. J., Cho, C.‐H., Cho, J., & Woo, J.‐M. (2015). Reliability of ultra‐short‐term analysis as a surrogate of standard 5‐min analysis of heart rate variability. Telemedicine and e‐Health, 21(5), 404–414.
  4. Cajal, D., Hernando, D., Lázaro, J., Laguna, P., Gil, E., & Bailón, R. (2022). Effects of missing data on heart rate variability metrics. Sensors, 22(15), 5774.
  5. Eijsvogels, T. M., Molossi, S., Lee, D.‐c., Emery, M. S., & Thompson, P. D. (2016). Exercise at the extremes: The amount of exercise to reduce cardiovascular events. Journal of the American College of Cardiology, 67(3), 316–329.
  6. Fu, Q., & Levine, B. D. (2013). Exercise and the autonomic nervous system. Handbook of Clinical Neurology, 117, 147–160.
  7. Giles, D. A., & Draper, N. (2018). Heart rate variability during exercise: A comparison of artefact correction methods. The Journal of Strength & Conditioning Research, 32(3), 726–735.
  8. Goldstein, D. S., Bentho, O., Park, M.‐Y., & Sharabi, Y. (2011). Low‐frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Experimental Physiology, 96(12), 1255–1261.
  9. Hoshi, R., Santos, I. D. S., Bittencourt, M., Dantas, E., Andreão, R., Mill, J., Lotufo, P. A., & Benseñor, I. (2023). Association of coronary artery calcium with heart rate variability in the Brazilian longitudinal study of adult health‐ELSA‐Brasil. Brazilian Journal of Medical and Biological Research, 56, e12364.
  10. Hou, Z.‐H., Lu, B., Gao, Y., Jiang, S.‐L., Wang, Y., Li, W., & Budoff, M. J. (2012). Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients. JACC: Cardiovascular Imaging, 5(10), 990–999.
  11. Jae, S. Y., Fernhall, B., Heffernan, K. S., Kang, M., Lee, M.‐K., Choi, Y. H., Hong, K. P., Ahn, E. S., & Park, W. H. (2006). Exaggerated blood pressure response to exercise is associated with carotid atherosclerosis in apparently healthy men. Journal of Hypertension, 24(5), 881–887.
  12. Jae, S. Y., Kurl, S., Laukkanen, J. A., Yoon, E. S., Choi, Y.‐H., Fernhall, B., & Franklin, B. A. (2017). Relation of heart rate recovery after exercise testing to coronary artery calcification. Annals of Medicine, 49(5), 404–410.
  13. Kleiven, Ø., Bjørkavoll‐Bergseth, M. F., Omland, T., Aakre, K. M., Frøysa, V., Erevik, C. B., Greve, O. J., Melberg, T. H., Auestad, B., Skadberg, Ø., Edvardsen, T., & Ørn, S. (2020). Endurance exercise training volume is not associated with progression of coronary artery calcification. Scandinavian Journal of Medicine & Science in Sports, 30(6), 1024–1032.
  14. Kleiven, Ø., Omland, T., Skadberg, Ø., Melberg, T. H., Bjørkavoll‐Bergseth, M. F., Auestad, B., Bergseth, R., Greve, O. J., Aakre, K. M., & Ørn, S. (2019). Race duration and blood pressure are major predictors of exercise induced cardiac troponin elevation. International Journal of Cardiology, 283, 1–8.
  15. Lakatta, E. G., & Levy, D. (2003). Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part i: Aging arteries: A “set up” for vascular disease. Circulation, 107(1), 139–146.
  16. Malik, M. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use: Task force of the European society of cardiology and the north American society for pacing and electrophysiology. Annals of Noninvasive Electrocardiology, 1(2), 151–181.
  17. Miyai, N., Shiozaki, M., Terada, K., Takeshita, T., Utsumi, M., Miyashita, K., & Arita, M. (2021). Exaggerated blood pressure response to exercise is associated with subclinical vascular impairment in healthy normotensive individuals. Clinical and Experimental Hypertension, 43(1), 56–62.
  18. Pepera, G., Hadjiandrea, S., Iliadis, I., Sandercock, G. R., & Batalik, L. (2022). Associations between cardiorespiratory fitness, fatness, hemodynamic characteristics, and sedentary behaviour in primary school‐aged children. BMC Sports Science, Medicine and Rehabilitation, 14(1), 16.
  19. Python Software Foundation. (2020). Python Language Reference, version 3.8. Available at https://www.python.org
  20. Rahman, F., Pechnik, S., Gross, D., Sewell, L., & Goldstein, D. S. (2011). Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clinical Autonomic Research, 21, 133–141.
  21. Reyes del Paso, G. A., Langewitz, W., Mulder, L. J., Van Roon, A., & Duschek, S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology, 50(5), 477–487.
  22. Rincon Soler, A. I., Silva, L. E. V., Fazan, Jr, R., & Murta, Jr, L. O. (2018). The impact of artifact correction methods of RR series on heart rate variability parameters. Journal of Applied Physiology, 124(3), 646–652.
  23. Sammito, S., & Böckelmann, I. (2016). Factors influencing heart rate variability. International Cardiovascular Forum Journal, 6, 18–22.
  24. Sangiorgi, G., Rumberger, J. A., Severson, A., Edwards, W. D., Gregoire, J., Fitzpatrick, L. A., & Schwartz, R. S. (1998). Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: A histologic study of 723 coronary artery segments using nondecalcifying methodology. Journal of the American College of Cardiology, 31(1), 126–133.
  25. Saz‐Lara, A., Cavero‐Redondo, I., Alvarez‐Bueno, C., Notario‐Pacheco, B., Ruiz‐Grao, M. C., & Martinez‐Vizcaino, V. (2021). The acute effect of exercise on arterial stiffness in healthy subjects: A meta‐analysis. Journal of Clinical Medicine, 10(2), 291.
  26. Shiroma, E. J., & Lee, I.‐M. (2010). Physical activity and cardiovascular health: Lessons learned from epidemiological studies across age, gender, and race/ethnicity. Circulation, 122(7), 743–752.
  27. Silverman, M. G., Blaha, M. J., Krumholz, H. M., Budoff, M. J., Blankstein, R., Sibley, C. T., Agatston, A., Blumenthal, R. S., & Nasir, K. (2014). Impact of coronary artery calcium on coronary heart disease events in individuals at the extremes of traditional risk factor burden: The multi‐ethnic study of atherosclerosis. European Heart Journal, 35(33), 2232–2241.
  28. Skadberg, Ø., Kleiven, Ø., Ørn, S., Bjørkavoll‐Bergseth, M. F., Melberg, T. H., Omland, T., & Aakre, K. M. (2018). The cardiac troponin response following physical exercise in relation to biomarker criteria for acute myocardial infarction; the north sea race endurance exercise study (NEEDED) 2013. Clinica Chimica Acta, 479, 155–159.
  29. Svane, J., Wiktorski, T., Ørn, S., & Eftestøl, T. C. (2023). Optimizing support vector machines and autoregressive integrated moving average methods for heart rate variability data correction. MethodsX, 11, 102381.
  30. Thompson, P. D., Franklin, B. A., Balady, G. J., Blair, S. N., Corrado, D., Estes III, N. M., Fulton, J. E., Gordon, N. F., Haskell, W. L., Link, M. S., Maron, B. J., Mittleman, M. A., Pelliccia, A., Wenger, N. K., Willich, S. N., & Costa, F., & American Heart Association Council on Nutrition, Physical Activity, and Metabolism, American Heart Association Council on Clinical Cardiology, & American College of Sports Medicine. (2007). Exercise and acute cardiovascular events: Placing the risks into perspective: A scientific statement from the American heart association council on nutrition, physical activity, and metabolism and the council on clinical cardiology. Circulation, 115(17), 2358–2368.
  31. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17, 261–272.
  32. Zambach, C., Fedorowski, A., Gerward, S., Johansson, M., Engström, G., & Hamrefors, V. (2023). Subclinical atherosclerosis and risk factors in relation to autonomic indices in the general population. Journal of Hypertension, 41(5), 759–767.
  33. Zhou, T. L., Reulen, J. P., Van Der Staaij, H., Stehouwer, C. D., Van Greevenbroek, M., Henry, R. M., & Kroon, A. A. (2023). Cardiovagal baroreflex sensitivity, blood pressure and blood pressure variability–the Maastricht study. Journal of Hypertension, 41(2), 254–261.

Word Cloud

Created with Highcharts 10.0.0CACmmHgexerciseindividualsHRVvsP = 0coronaryhigh-intensityendurancemeasuresratehigherpressureincreasedarterycalcificationsignificantprolongedhaemodynamicheartDBPassociatedliferiskadversestudyvariabilitywithoutwomenraceparticipants20topTHHbloodSBPbpm×028comparedmsindependentpredictorrestingautonomicresponseEndurancedurationimprovedqualityParadoxicallyhighintensityalsosmallcardiaceventsmechanismsunderlyingdevelopmentunknownaimsdeterminedifferencescardiovascularHemodynamic56healthymiddle-agedmedian[interquartilerange]51[43-58]years41men/15participating91 km[2512[2172-2716]min]leisuresportmountainbikeincludedTwenty-fivemen/5classifiedbasedcomputedtomographicassessmentHaemodynamicquantifiedhardesthilllastquartersignificantlysystolic235[225-245]220[193-238]008diastolic105[95-110]95[85-110]006pulse130[125-140]123[110-130]039meanproduct33882[30872-35053]31[27392-33047]largerincreasebaseline[20-30]10[0-20]001showedreductionlow-frequencycomponent63[24-115]124[68-202]044multivariableanalysispresenceevenadjustingestablishedfactorsatherosclerosis:agesexbodymassindexmaximumsmokingalterationsfollowingsuggestingAlterations

Similar Articles

Cited By