"Energetics of the outer retina I: Estimates of nutrient exchange and ATP generation".

Stella Prins, Christina Kiel, Alexander J E Foss, Moussa A Zouache, Philip J Luthert
Author Information
  1. Stella Prins: UCL Institute of Ophthalmology, London, United Kingdom.
  2. Christina Kiel: Department of Molecular Medicine, University of Pavia, Pavia, Italy.
  3. Alexander J E Foss: Department of Ophthalmology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom.
  4. Moussa A Zouache: John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America.
  5. Philip J Luthert: UCL Institute of Ophthalmology, London, United Kingdom. ORCID

Abstract

Photoreceptors (PRs) are metabolically demanding and packed at high density, which presents a challenge for nutrient exchange between the associated vascular beds and the tissue. Motivated by the ambition to understand the constraints under which PRs function, in this study we have drawn together diverse physiological and anatomical data in order to generate estimates of the rates of ATP production per mm2 of retinal surface area. With the predictions of metabolic demand in the companion paper, we seek to develop an integrated energy budget for the outer retina. It is known that rod PR number and the extent of the choriocapillaris (CC) vascular network that supports PRs both decline with age. To set the outer retina energy budget in the context of aging we demonstrate how, at different eccentricities, decline CC density is more than matched by rod loss in a way that tends to preserve nutrient exchange per rod. Together these finds provide an integrated framework for the study of outer retinal metabolism and how it might change with age.

References

  1. Amino Acids. 2021 Dec;53(12):1789-1806 [PMID: 33871679]
  2. Pac Symp Biocomput. 2016;22:485-496 [PMID: 27897000]
  3. Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1696-704 [PMID: 17557923]
  4. PLoS One. 2011 Feb 16;6(2):e16957 [PMID: 21359215]
  5. PLoS Comput Biol. 2016 Mar 04;12(3):e1004808 [PMID: 26942765]
  6. J Comp Neurol. 1973 Mar 15;148(2):229-48 [PMID: 4700509]
  7. J Biol Chem. 2017 Aug 4;292(31):12895-12905 [PMID: 28615447]
  8. Philos Trans A Math Phys Eng Sci. 2016 Nov 13;374(2080): [PMID: 27698035]
  9. Front Oncol. 2022 Jul 07;12:914594 [PMID: 35875150]
  10. Invest Ophthalmol Vis Sci. 1993 Mar;34(3):516-21 [PMID: 8449672]
  11. Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24100-24107 [PMID: 31712411]
  12. Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19599-19603 [PMID: 32719136]
  13. Proteomics. 2024 Jun;24(12-13):e2200220 [PMID: 38012370]
  14. Ophthalmol Retina. 2022 Jan;6(1):65-79 [PMID: 34257060]
  15. Methods Mol Biol. 2016;1386:253-81 [PMID: 26677187]
  16. Ophthalmology. 2018 Mar;125(3):369-390 [PMID: 29110945]
  17. Elife. 2016 Mar 15;5: [PMID: 26978795]
  18. Sci Signal. 2020 Mar 24;13(624): [PMID: 32209698]
  19. Invest Ophthalmol Vis Sci. 1997 Jan;38(1):48-55 [PMID: 9008629]
  20. J Biol Chem. 2016 Feb 26;291(9):4698-710 [PMID: 26677218]
  21. J Comp Neurol. 1996 Feb 26;366(1):55-75 [PMID: 8866846]
  22. Invest Ophthalmol Vis Sci. 1994 May;35(6):2857-64 [PMID: 8188481]
  23. Front Aging Neurosci. 2022 Feb 25;14:778404 [PMID: 35283756]
  24. J Physiol. 2021 Mar;599(6):1769-1782 [PMID: 33215707]
  25. Exp Eye Res. 2019 Jul;184:234-242 [PMID: 31075224]
  26. Adv Exp Med Biol. 2023;1415:435-441 [PMID: 37440069]
  27. J Biol Chem. 2023 Nov;299(11):105275 [PMID: 37741457]
  28. Invest Ophthalmol Vis Sci. 2019 Aug 1;60(10):3456-3467 [PMID: 31398255]
  29. Elife. 2024 May 13;12: [PMID: 38739438]
  30. Sci Rep. 2016 Oct 25;6:35754 [PMID: 27779198]
  31. NAR Genom Bioinform. 2024 Feb 10;6(1):lqae019 [PMID: 38344273]
  32. J Comp Neurol. 1990 Feb 22;292(4):497-523 [PMID: 2324310]
  33. Vision Res. 2004;44(17):2043-65 [PMID: 15149837]
  34. Ophthalmol Sci. 2023 Feb 02;3(3):100277 [PMID: 36970115]
  35. EMBO J. 2019 Sep 16;38(18):e100811 [PMID: 31436334]
  36. Mol Vis. 2018 Jun 25;24:425-433 [PMID: 30034209]
  37. Cell Rep. 2022 Jun 7;39(10):110917 [PMID: 35675773]
  38. Am J Ophthalmol. 2019 Apr;200:110-122 [PMID: 30639367]
  39. Invest Ophthalmol Vis Sci. 1993 Nov;34(12):3278-96 [PMID: 8225863]

MeSH Term

Adenosine Triphosphate
Humans
Retina
Animals
Energy Metabolism
Nutrients
Retinal Rod Photoreceptor Cells
Aging
Choroid

Chemicals

Adenosine Triphosphate

Word Cloud

Created with Highcharts 10.0.0outerPRsnutrientexchangeretinaroddensityvascularstudyATPperretinalintegratedenergybudgetCCdeclineagePhotoreceptorsmetabolicallydemandingpackedhighpresentschallengeassociatedbedstissueMotivatedambitionunderstandconstraintsfunctiondrawntogetherdiversephysiologicalanatomicaldataordergenerateestimatesratesproductionmm2surfaceareapredictionsmetabolicdemandcompanionpaperseekdevelopknownPRnumberextentchoriocapillarisnetworksupportssetcontextagingdemonstratedifferenteccentricitiesmatchedlosswaytendspreserveTogetherfindsprovideframeworkmetabolismmightchange"EnergeticsI:Estimatesgeneration"

Similar Articles

Cited By (1)