Data-driven cluster analysis of lipids, inflammation, and aging in relation to new-onset type 2 diabetes mellitus.
Ha-Eun Ryu, Seok-Jae Heo, Jong Hee Lee, Byoungjin Park, Taehwa Han, Yu-Jin Kwon
Author Information
Ha-Eun Ryu: Department of Family Medicine, Yongin Severance Hospital, Gyeonggi-do, Republic of Korea.
Seok-Jae Heo: Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.
Jong Hee Lee: Department of Family Medicine, Yongin Severance Hospital, Gyeonggi-do, Republic of Korea.
Byoungjin Park: Department of Family Medicine, Yongin Severance Hospital, Gyeonggi-do, Republic of Korea.
Taehwa Han: Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
Yu-Jin Kwon: Department of Family Medicine, Yongin Severance Hospital, Gyeonggi-do, Republic of Korea. digda3@yuhs.ac.
PURPOSE: Early detection and intervention are vital for managing type 2 diabetes mellitus (T2DM) effectively. However, it's still unclear which risk factors for T2DM onset are most significant. This study aimed to use cluster analysis to categorize individuals based on six known risk factors, helping to identify high-risk groups requiring early intervention to prevent T2DM onset. METHODS: This study comprised 7402 Korean Genome and Epidemiology Study individuals aged 40 to 69 years. The hybrid hierarchical k-means clustering algorithm was employed on six variables normalized by Z-score-age, triglycerides, total cholesterol, non-high-density lipoprotein cholesterol, high-density lipoprotein cholesterol and C-reactive protein. Multivariable Cox proportional hazard regression analyses were conducted to assess T2DM incidence. RESULTS: Four distinct clusters with significantly different characteristics and varying risks of new-onset T2DM were identified. Cluster 4 (insulin resistance) had the highest T2DM incidence, followed by Cluster 3 (inflammation and aging). Clusters 3 and 4 exhibited significantly higher T2DM incidence rates compared to Clusters 1 (healthy metabolism) and 2 (young age), even after adjusting for covariates. However, no significant difference was found between Clusters 3 and 4 after covariate adjustment. CONCLUSION: Clusters 3 and 4 showed notably higher T2DM incidence rates, emphasizing the distinct risks associated with insulin resistance and inflammation-aging clusters.
B. Zhou, Y. Lu, K. Hajifathalian, J. Bentham, M. Di Cesare, G. Danaei, H. Bixby, M.J. Cowan, M.K. Ali, C. Taddei, Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4�� 4 million participants. Lancet 387(10027), 1513���1530 (2016)
Y. Zheng, S.H. Ley, F.B. Hu, Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14(2), 88���98 (2018)
[PMID: 29219149]
S.Y. Tan, J.L.M. Wong, Y.J. Sim, S.S. Wong, S.A.M. Elhassan, S.H. Tan, G.P.L. Lim, N.W.R. Tay, N.C. Annan, S.K. Bhattamisra, Type 1 and 2 diabetes mellitus: a review on current treatment approach and gene therapy as potential intervention. Diab. Metab. Syndr. Clin. Res. Rev. 13(1), 364���372 (2019)
M.A. Reddy, E. Zhang, R. Natarajan, Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58, 443���455 (2015)
[PMID: 25481708]
M. Brownlee, The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6), 1615���1625 (2005)
[PMID: 15919781]
M. Roden, G.I. Shulman, The integrative biology of type 2 diabetes. Nature 576(7785), 51���60 (2019)
[PMID: 31802013]
U. Galicia-Garcia, A. Benito-Vicente, S. Jebari, A. Larrea-Sebal, H. Siddiqi, K.B. Uribe, H. Ostolaza, C. Mart��n, Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 21(17), 6275 (2020)
[PMID: 32872570]
S. Ley, S. Harris, P. Connelly, M. Mamakeesick, J. Gittelsohn, T. Wolever, R. Hegele, B. Zinman, A. Hanley, Utility of non���high���density lipoprotein cholesterol in assessing incident type 2 diabetes risk. Diab. Obes. Metab. 14(9), 821���825 (2012)
A. von Eckardstein, R.A. Sibler, Possible contributions of lipoproteins and cholesterol to the pathogenesis of diabetes mellitus type 2. Curr. Opin. Lipidol. 22(1), 26���32 (2011)
A. Tirosh, I. Shai, R. Bitzur, I. Kochba, D. Tekes-Manova, E. Israeli, T. Shochat, A. Rudich, Changes in triglyceride levels over time and risk of type 2 diabetes in young men. Diab. Care 31(10), 2032���2037 (2008)
P.W. Wilson, J.B. Meigs, L. Sullivan, C.S. Fox, D.M. Nathan, R.B. D���Agostino,, Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch. Intern. Med. 167(10), 1068���1074 (2007).
[PMID: 17533210]
L. Li, P. Li, J. Yang, X. Huang, H. Bao, C. Zhang, Y. Song, M. Zhao, M. Ji, Y. Wang, Lipid levels and new-onset diabetes in a hypertensive population: the China Stroke Primary Prevention Trial. Sci. Rep. 7(1), 7014 (2017)
[PMID: 28765644]
X. Bao, Y. Born��, L. Johnson, I.F. Muhammad, M. Persson, K. Niu, G. Engstr��m, Comparing the inflammatory profiles for incidence of diabetes mellitus and cardiovascular diseases: a prospective study exploring the ���common soil���hypothesis. Cardiovasc. Diabetol. 17(1), 1���11 (2018)
K.M. Peper, B. Guo, D. Leann Long, G. Howard, A.P. Carson, V.J. Howard, S.E. Judd, N.A. Zakai, A. Cherrington, M. Cushman, C-reactive protein and racial differences in type 2 diabetes incidence: the REGARDS study. J. Clin. Endocrinol. Metab. 107(6), e2523���e2531 (2022)
[PMID: 35137178]
B.S. Nayak, A. Sobrian, K. Latiff, D. Pope, A. Rampersad, K. Louren��o, N. Samuel, The association of age, gender, ethnicity, family history, obesity, and hypertension with type 2 diabetes mellitus in Trinidad. Diab. Metab. Syndrome: Clin. Res. Rev. 8(2), 91���95 (2014)
M. Halim, A. Halim, The effects of inflammation, aging, and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes & metabolic syndrome. Clin. Res. Rev. 13(2), 1165���1172 (2019)
Y. Kim, B.G. Han, Cohort profile: the Korean Genome and Epidemiology Study (KoGES) Consortium. Int J. Epidemiol. 46(2), e20 (2017). https://doi.org/10.1093/ije/dyv316
[DOI: 10.1093/ije/dyv316]
D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner, Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7), 412���419 (1985). https://doi.org/10.1007/bf00280883
[DOI: 10.1007/bf00280883]
A.D, Association, Diagnosis, and classification of diabetes mellitus. Diab. Care 37(Supplement_1), S81���S90 (2014)
B. Chen, P.C. Tai, R. Harrison, Y. Pan, Novel hybrid hierarchical-K-means clustering method (HK-means) for microarray analysis 2005 IEEE computational systems bioinformatics conference-workshops (CSBW'05), pp. 105���108. IEEE (2005)
E. Ahlqvist, P. Storm, A. K��r��j��m��ki, M. Martinell, M. Dorkhan, A. Carlsson, P. Vikman, R.B. Prasad, D.M. Aly, P. Almgren, Y. Wessman, N. Shaat, P. Sp��gel, H. Mulder, E. Lindholm, O. Melander, O. Hansson, U. Malmqvist, ��. Lernmark, K. Lahti, T. Fors��n, T. Tuomi, A.H. Rosengren, L. Groop, Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diab. Endocrinol. 6(5), 361���369 (2018). https://doi.org/10.1016/s2213-8587(18)30051-2
[DOI: 10.1016/s2213-8587(18)30051-2]
P.J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53���65 (1987)
S. Chatterjee, K. Khunti, M.J. Davies, Type 2 diabetes. Lancet 389(10085), 2239���2251 (2017)
[PMID: 28190580]
R.A. DeFronzo, D. Tripathy, Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diab. Care 32(Suppl 2), S157 (2009)
S. Lillioja, D.M. Mott, B.V. Howard, P.H. Bennett, H. Yki-J��rvinen, D. Freymond, B.L. Nyomba, F. Zurlo, B. Swinburn, C. Bogardus, Impaired glucose tolerance as a disorder of insulin action. Longitud. Cross-Sect. Stud. Pima Indians N. Engl. J. Med. 318(19), 1217���1225 (1988). https://doi.org/10.1056/nejm198805123181901
[DOI: 10.1056/nejm198805123181901]
Y. Kim, A.L. Han, The correlation between triglyceride to HDL cholesterol ratio and metabolic syndrome, nutrition intake in Korean adults: Korean National Health and Nutrition Examination Survey 2016. J. Nutr. Health 52(3), 268���276 (2019)
G.F. Lewis, K.D. Uffelman, L.W. Szeto, G. Steiner, Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apoB production in normal weight and obese individuals. Diabetes 42(6), 833���842 (1993). https://doi.org/10.2337/diab.42.6.833
[DOI: 10.2337/diab.42.6.833]
R.D. Siegel, A. Cupples, E.J. Schaefer, P.W. Wilson, Lipoproteins, apolipoproteins, and low-density lipoprotein size among diabetics in the Framingham offspring study. Metabolism 45(10), 1267���1272 (1996)
[PMID: 8843183]
H.N. Ginsberg, L.-S. Huang, The insulin resistance syndrome: impact on lipoprotein metabolism and atherothrombosis. J. Cardiovasc. Risk 7(5), 325���331 (2000)
[PMID: 11143762]
G. Kolovou, K. Anagnostopoulou, D. Cokkinos, Pathophysiology of dyslipidaemia in the metabolic syndrome. Postgrad. Med. J. 81(956), 358���366 (2005)
[PMID: 15937200]
R. Gong, G. Luo, M. Wang, L. Ma, S. Sun, X. Wei, Associations between TG/HDL ratio and insulin resistance in the US population: a cross-sectional study. Endocr. Connect. 10(11), 1502���1512 (2021)
[PMID: 34678755]
H. Liu, J. Liu, J. Liu, S. Xin, Z. Lyu, X. Fu, Triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio, a simple but effective indicator in predicting type 2 diabetes mellitus in older adults. Front. Endocrinol. 13, 828581 (2022). https://doi.org/10.3389/fendo.2022.828581
[DOI: 10.3389/fendo.2022.828581]
B. Che, C. Zhong, R. Zhang, L. Pu, T. Zhao, Y. Zhang, L. Han, Triglyceride-glucose index and triglyceride to high-density lipoprotein cholesterol ratio as potential cardiovascular disease risk factors: an analysis of UK biobank data. Cardiovasc. Diabetol. 22(1), 34 (2023). https://doi.org/10.1186/s12933-023-01762-2
[DOI: 10.1186/s12933-023-01762-2]
C. Gabay, I. Kushner, Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340(6), 448���454 (1999)
[PMID: 9971870]
J.I. Barzilay, L. Abraham, S.R. Heckbert, M. Cushman, L.H. Kuller, H.E. Resnick, R.P. Tracy, The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes 50(10), 2384���2389 (2001). https://doi.org/10.2337/diabetes.50.10.2384
[DOI: 10.2337/diabetes.50.10.2384]
B. Thorand, H. L��wel, A. Schneider, H. Kolb, C. Meisinger, M. Fr��hlich, W. Koenig, C-reactive protein as a predictor for incident diabetes mellitus among middle-aged men: results from the MONICA Augsburg cohort study, 1984-1998. Arch. Intern Med 163(1), 93���99 (2003). https://doi.org/10.1001/archinte.163.1.93
[DOI: 10.1001/archinte.163.1.93]
A. Sepe, T. Tchkonia, T. Thomou, M. Zamboni, J.L. Kirkland, Aging and regional differences in fat cell progenitors���a mini-review. Gerontology 57(1), 66���75 (2010)
[PMID: 20110661]
N. Barzilai, D.M. Huffman, R.H. Muzumdar, A. Bartke, The critical role of metabolic pathways in aging. Diabetes 61(6), 1315���1322 (2012)
[PMID: 22618766]
D.P.P.R, Group, Strategies to identify adults at high risk for type 2 diabetes: the Diabetes Prevention Program. Diab. Care 28(1), 138���144 (2005)
M.H. Park, D.H. Kim, E.K. Lee, N.D. Kim, D.S. Im, J. Lee, B.P. Yu, H.Y. Chung, Age-related inflammation and insulin resistance: a review of their intricate interdependency. Arch. Pharmacal Res. 37, 1507���1514 (2014)
M. Nauck, G.R. Warnick, N. Rifai, Methods for measurement of LDL-cholesterol: a critical assessment of direct measurement by homogeneous assays versus calculation. Clin. Chem. 48(2), 236���254 (2002)
[PMID: 11805004]
P. Mardi, F. Abdi, A. Ehsani, E. Seif, S. Djalalinia, J. Heshmati, E. Shahrestanaki, A.M. Gorabi, M. Qorbani, Is non-high-density lipoprotein associated with metabolic syndrome? A systematic review and meta-analysis. Front. Endocrinol. 13, 957136 (2022)
B.A.P. Phan, P.P. Toth, Dyslipidemia in women: etiology and management. Int. J. women���s. health 6, 185���194 (2014)
Grants
S3370378/Ministry of SMEs and Startups and the Korea Technology and Promotion Agency for SME