CD63 as novel target for nanoemulsion-based F MRI imaging and drug delivery to activated cardiac fibroblasts.

Arlen Aurora Euan Martínez, Ann Kathrin Bergmann, Frederik Tellkamp, Stephan Schott-Verdugo, Pascal Bouvain, Julia Steinhausen, Jasmin Bahr, Vivien Kmietczyk, Maja Bencun, Ulrich Flögel, Jörg H W Distler, Marcus Krueger, Mirko Völkers, Constantin Czekelius, Holger Gohlke, Sebastian Temme, Julia Hesse, Jürgen Schrader
Author Information
  1. Arlen Aurora Euan Martínez: Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  2. Ann Kathrin Bergmann: Core Facility for Electron Microscopy, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  3. Frederik Tellkamp: Institute for Genetics, University of Cologne, Cologne, Germany.
  4. Stephan Schott-Verdugo: Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich, Germany.
  5. Pascal Bouvain: Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  6. Julia Steinhausen: Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  7. Jasmin Bahr: Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  8. Vivien Kmietczyk: Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Heidelberg, Germany.
  9. Maja Bencun: Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Heidelberg, Germany.
  10. Ulrich Flögel: Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  11. Jörg H W Distler: Department of Rheumatology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  12. Marcus Krueger: Institute for Genetics, University of Cologne, Cologne, Germany.
  13. Mirko Völkers: Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), Heidelberg University Hospital, Heidelberg, Germany.
  14. Constantin Czekelius: Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  15. Holger Gohlke: Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich, Germany.
  16. Sebastian Temme: CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  17. Julia Hesse: Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
  18. Jürgen Schrader: Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

Abstract

Cardiac fibroblasts are activated following myocardial infarction (MI) and cardiac fibrosis is a major driver of the growing burden of heart failure. A non-invasive targeting method for activated cardiac fibroblasts would be advantageous because of their importance for imaging and therapy. Targeting was achieved by linking a 7-amino acid peptide (EP9) to a perfluorocarbon-containing nanoemulsion (PFC-NE) for visualization by F-combined with H-MRI. and H/F MRI was performed on a Bruker 9.4 T AVANCE III wide-bore nuclear magnetic resonance spectrometer. Photoaffinity labeling (diazirine photolinker) and mass spectrometry were used to identify the peptide-binding protein. Molecular modeling studies used ColabFold and AlphaFold 3. EP9-decorated liposomes containing modified mRNA for luciferase (mRNA-LUC) were used for the study of the cellular uptake process. After injection of EP9-PFC-NE, the in-vivo F signal localized to the infarcted area of the heart and was EP9-specific, as verified by the use of a mutated peptide. The plasma half-life of the nanoemulsion was 20 h and electron microscopy identified cardiac fibroblasts and epicardial stromal cells to be the main populations for cellular uptake. Photoaffinity labeling identified the tetraspanin CD63 as the main EP9-binding protein, which was supported by CD63-EP9 modeling data. Expression of CD63 was significantly upregulated in infarct-activated fibroblasts of mice and humans. Cellular uptake may involve caveolae and/or clathrin-coated pits as suggested by scRNAseq data. Uptake studies with mRNA-LUC-loaded EP9-PFC-NE confirmed internalization after binding to fibroblast CD63. CD63 was identified to contain a specific EP9 binding motive that triggers endocytosis of EP9-PFC-NE in activated cardiac fibroblasts. This targeted nanoemulsion can therefore be used for imaging and has the potential for fibroblast-specific drug delivery.

Keywords

References

  1. Trends Cell Biol. 2024 Jun;34(6):509-522 [PMID: 37783654]
  2. J Chem Inf Model. 2023 May 8;63(9):2651-2655 [PMID: 37092865]
  3. Nat Cardiovasc Res. 2023 Feb;2(2):126-143 [PMID: 39196054]
  4. J Nucl Cardiol. 2022 Apr;29(2):881-884 [PMID: 32803676]
  5. Nat Rev Cardiol. 2018 Oct;15(10):631-647 [PMID: 29950578]
  6. Circ Cardiovasc Imaging. 2020 Sep;13(9):e010628 [PMID: 32912030]
  7. Sci Rep. 2020 Dec 10;10(1):21669 [PMID: 33303866]
  8. Mol Aspects Med. 2023 Oct;93:101194 [PMID: 37384998]
  9. PLoS One. 2012;7(4):e34730 [PMID: 22514659]
  10. Front Bioinform. 2022 Sep 26;2:959160 [PMID: 36304330]
  11. Cardiovasc Res. 2020 Apr 1;116(5):1047-1058 [PMID: 31504244]
  12. Mol Pharmacol. 2019 Feb;95(2):196-209 [PMID: 30514721]
  13. Bioinformatics. 2019 Aug 15;35(16):2856-2858 [PMID: 30615063]
  14. Cardiovasc Res. 2022 Jan 29;118(2):e20-e22 [PMID: 34244741]
  15. PLoS One. 2012;7(9):e44692 [PMID: 23028582]
  16. Biomacromolecules. 2009 Nov 9;10(11):3122-9 [PMID: 19848408]
  17. Circulation. 2008 Jul 8;118(2):140-8 [PMID: 18574049]
  18. J Clin Invest. 2023 Jun 1;133(11): [PMID: 36943408]
  19. J Nucl Cardiol. 2021 Jun;28(3):812-821 [PMID: 32975729]
  20. Nat Methods. 2022 Jun;19(6):679-682 [PMID: 35637307]
  21. J Nucl Cardiol. 2022 Jun;29(3):1475-1477 [PMID: 33106984]
  22. Nat Commun. 2022 Oct 12;13(1):6028 [PMID: 36224222]
  23. JACC Heart Fail. 2024 Mar;12(3):525-536 [PMID: 38069996]
  24. Hypertension. 2017 Jun;69(6):1092-1103 [PMID: 28373589]
  25. Nature. 2024 Jun;630(8016):493-500 [PMID: 38718835]
  26. J Cell Sci. 2014 Sep 1;127(Pt 17):3641-8 [PMID: 25128561]
  27. Genome Biol. 2004;5(3):214 [PMID: 15003112]
  28. Circulation. 2018 Jul 10;138(2):166-180 [PMID: 29386203]
  29. Nature. 2008 Jul 3;454(7200):109-13 [PMID: 18568026]
  30. Proc Natl Acad Sci U S A. 2022 Jul 12;119(28):e2200183119 [PMID: 35771944]
  31. J Clin Invest. 2017 Mar 1;127(3):899-911 [PMID: 28165342]
  32. J Nucl Med. 2022 Sep;63(9):1415-1423 [PMID: 35210301]
  33. Sci Signal. 2008 Jul 08;1(27):re6 [PMID: 18612141]
  34. PET Clin. 2023 Jul;18(3):409-418 [PMID: 36990945]
  35. Nature. 2011 Jun 08;474(7353):640-4 [PMID: 21654746]
  36. Blood. 2021 Oct 21;138(16):1490-1503 [PMID: 34265052]
  37. JACC Basic Transl Sci. 2019 Jun 24;4(3):449-467 [PMID: 31312768]
  38. Pharmaceutics. 2018 Aug 22;10(3): [PMID: 30131473]
  39. Eur J Pharm Biopharm. 2019 Sep;142:114-122 [PMID: 31220572]
  40. Circulation. 2015 Apr 21;131(16):1405-14 [PMID: 25700177]
  41. Circ Cardiovasc Imaging. 2023 Sep;16(9):e014742 [PMID: 37725674]
  42. Exp Cell Res. 2009 May 15;315(9):1584-92 [PMID: 18930046]
  43. Mol Cancer. 2014 May 31;13:134 [PMID: 24884960]
  44. Elife. 2021 Jun 21;10: [PMID: 34152268]
  45. Stem Cell Res. 2014 Nov;13(3 Pt B):683-92 [PMID: 24933704]
  46. Cell. 2016 Nov 3;167(4):1041-1051.e11 [PMID: 27881302]
  47. Nat Commun. 2021 Oct 6;12(1):5847 [PMID: 34615876]

MeSH Term

Animals
Fibroblasts
Magnetic Resonance Imaging
Emulsions
Myocardial Infarction
Drug Delivery Systems
Mice
Nanoparticles
Humans
Myocardium
Fluorocarbons

Chemicals

Emulsions
Fluorocarbons

Word Cloud

Created with Highcharts 10.0.0fibroblastsCD63cardiacactivatedusedimagingnanoemulsionuptakeEP9-PFC-NEidentifiedmyocardialinfarctionfibrosisheartpeptideEP9MRIPhotoaffinitylabelingproteinmodelingstudiesmodifiedmRNAcellularFmaindatabindingdrugdeliveryCardiacfollowingMImajordrivergrowingburdenfailurenon-invasivetargetingmethodadvantageousimportancetherapyTargetingachievedlinking7-aminoacidperfluorocarbon-containingPFC-NEvisualizationF-combinedH-MRIH/FperformedBruker94TAVANCEIIIwide-borenuclearmagneticresonancespectrometerdiazirinephotolinkermassspectrometryidentifypeptide-bindingMolecularColabFoldAlphaFold3EP9-decoratedliposomescontainingluciferasemRNA-LUCstudyprocessinjectionin-vivosignallocalizedinfarctedareaEP9-specificverifiedusemutatedplasmahalf-life20helectronmicroscopyepicardialstromalcellspopulationstetraspaninEP9-bindingsupportedCD63-EP9Expressionsignificantlyupregulatedinfarct-activatedmicehumansCellularmayinvolvecaveolaeand/orclathrin-coatedpitssuggestedscRNAseqUptakemRNA-LUC-loadedconfirmedinternalizationfibroblastcontainspecificmotivetriggersendocytosistargetedcanthereforepotentialfibroblast-specificnoveltargetnanoemulsion-basedFAP

Similar Articles

Cited By