Machine Learning-based Prognostic Model for Brain Metastasis Patients: Insights from Blood Test Analysis.

Ruidan Li, Zheran Liu, Zhigong Wei, Rendong Huang, Yiyan Pei, Jing Yang, Zijian Qin, Huilin Li, Fang Fang, Xingchen Peng
Author Information
  1. Ruidan Li: Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  2. Zheran Liu: Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  3. Zhigong Wei: Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  4. Rendong Huang: Hangzhou Linan Guorui Health Industry Investment Co.,Ltd, Hangzhou, Zhejiang, China.
  5. Yiyan Pei: Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  6. Jing Yang: International Center for Aging and Cancer, Hainan Medical University, Haikou, China.
  7. Zijian Qin: Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  8. Huilin Li: Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  9. Fang Fang: Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  10. Xingchen Peng: Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Abstract

Brain metastases, affecting 30% of solid tumor patients, have a substantial impact on clinical outcomes. Developing a clinically feasible and precise prognostic model is crucial for personalized and comprehensive treatment. Parameters from blood test were collected from brain metastases patients, and were used to construct the four models, including univariate Cox regression, stepwise regression, LASSO regression, and random survival forest (RSF). Model-HP (based RSF), identified as the best-performing, was chosen. Model-GPAH was formed by merging Model-HP risk scores and GPA (Graded Prognostic Assessment). AUC, IDI, and cNRI were used to evaluate different models. A cohort of 1,385 patients was included, with 970 patients assigned to the training cohort and 415 patients were to the validation cohort. Compared to the other models, the Model-HP built on the RSF demonstrated superior performance (compared with RSF: AUC = 0.71 [0.66, 0.77], Univariate Cox regression: AUC = 0.65 [0.59, 0.71], P = 0.011; Stepwise regression: AUC = 0.63 [0.57, 0.69], P = 0.001; LASSO regression: AUC = 0.64 [0.58, 0.70], P < 0.001). Compared with Model-HP and GPA, Model-GPAH significantly enhanced the performance of prognosis prediction (compared with Model-GPAH: AUC = 0.70 [0.67, 0.73], GPA: AUC = 0.61 [0.57, 0.64], P = 0.001; Model-HP: AUC = 0.67 [0.64, 0.70], P < 0.001). Model-GPAH performed favorably across patients receiving diverse treatments. Integrating hematological parameters into the GPA model significantly enhanced prognostic prediction for brain metastasis patients, highlighting blood tests' crucial role in identifying biomarkers for outcomes.

Keywords

References

  1. Cancer Biother Radiopharm. 2021 Mar;36(2):167-173 [PMID: 32608994]
  2. Nat Rev Clin Oncol. 2020 May;17(5):279-299 [PMID: 32080373]
  3. Cancer Epidemiol Biomarkers Prev. 2023 May 1;32(5):718-725 [PMID: 37071491]
  4. Int J Mol Sci. 2021 Jul 27;22(15): [PMID: 34360768]
  5. Int J Radiat Oncol Biol Phys. 1997 Mar 1;37(4):745-51 [PMID: 9128946]
  6. Cancer Cell Int. 2022 Aug 11;22(1):251 [PMID: 35948974]
  7. Diabetes Care. 2018 Mar;41(3):604-612 [PMID: 29279299]
  8. Int J Radiat Oncol Biol Phys. 2004 Sep 1;60(1):218-24 [PMID: 15337559]
  9. Gastric Cancer. 2019 Jul;22(4):684-691 [PMID: 30417313]
  10. World J Surg Oncol. 2023 Mar 6;21(1):78 [PMID: 36872314]
  11. Clin Transl Med. 2020 Feb 10;9(1):6 [PMID: 32037496]
  12. Sci Rep. 2023 Sep 26;13(1):16073 [PMID: 37752191]
  13. Int J Radiat Oncol Biol Phys. 2008 Feb 1;70(2):510-4 [PMID: 17931798]
  14. Clin Chim Acta. 2018 Feb;477:94-104 [PMID: 29223765]
  15. Blood Coagul Fibrinolysis. 2021 Dec 1;32(8):572-577 [PMID: 34545042]
  16. Head Neck. 2018 Mar;40(3):647-655 [PMID: 29076207]
  17. Radiother Oncol. 2012 Feb;102(2):168-79 [PMID: 21996522]
  18. Lipids Health Dis. 2021 Oct 2;20(1):69 [PMID: 34598703]
  19. Int J Radiat Oncol Biol Phys. 2016 Oct 1;96(2):406-413 [PMID: 27598807]
  20. Int J Radiat Oncol Biol Phys. 2018 Jul 15;101(4):845-853 [PMID: 29976497]
  21. Cancer Cell Int. 2022 Oct 14;22(1):320 [PMID: 36242047]
  22. Int J Radiat Oncol Biol Phys. 2000 Jul 1;47(4):1001-6 [PMID: 10863071]
  23. Ann Thorac Surg. 2020 Feb;109(2):337-342 [PMID: 31593659]
  24. Ann Surg Oncol. 2021 Dec;28(13):8450-8461 [PMID: 34101065]
  25. J Neurooncol. 2022 Sep;159(2):359-368 [PMID: 35794505]
  26. Int J Surg. 2018 Jul;55:128-138 [PMID: 29807167]
  27. Biomed Res Int. 2020 Dec 10;2020:6661097 [PMID: 33376729]
  28. Int J Radiat Oncol Biol Phys. 2000 Mar 15;46(5):1155-61 [PMID: 10725626]
  29. Pract Radiat Oncol. 2017 Jul - Aug;7(4):e263-e273 [PMID: 28254368]
  30. Int J Radiat Oncol Biol Phys. 2010 Jul 1;77(3):655-61 [PMID: 19942357]

Word Cloud

Created with Highcharts 10.0.00=AUCpatients[0PModel-HP001prognosticmodelbrainmodelsregressionRSFModel-GPAHGPAcohortregression:BrainmetastasesoutcomescrucialbloodusedCoxLASSOPrognosticComparedperformancecompared576470]<significantlyenhancedprediction67hematologicalmetastasisaffecting30%solidtumorsubstantialimpactclinicalDevelopingclinicallyfeasibleprecisepersonalizedcomprehensivetreatmentParameterstestcollectedconstructfourincludingunivariatestepwiserandomsurvivalforestbasedidentifiedbest-performingchosenformedmergingriskscoresGradedAssessmentIDIcNRIevaluatedifferent1385included970assignedtraining415validationbuiltdemonstratedsuperiorRSF:716677]Univariate655971]011Stepwise6369]58prognosisModel-GPAH:7073]GPA:6164]Model-HP:performedfavorablyacrossreceivingdiversetreatmentsIntegratingparametershighlightingtests'roleidentifyingbiomarkersMachineLearning-basedModelMetastasisPatients:InsightsBloodTestAnalysisparametermachinelearning

Similar Articles

Cited By