Orchestrating the frontline: HDAC3-miKO recruits macrophage reinforcements for accelerated myelin debris clearance after stroke.

Jiaying Li, Chenran Wang, Yue Zhang, Yichen Huang, Ziyu Shi, Yuwen Zhang, Yana Wang, Shuning Chen, Yiwen Yuan, He Wang, Leilei Mao, Yanqin Gao
Author Information
  1. Jiaying Li: State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
  2. Chenran Wang: State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
  3. Yue Zhang: State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
  4. Yichen Huang: State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
  5. Ziyu Shi: State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
  6. Yuwen Zhang: Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
  7. Yana Wang: State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
  8. Shuning Chen: State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
  9. Yiwen Yuan: State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
  10. He Wang: Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
  11. Leilei Mao: State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
  12. Yanqin Gao: State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.

Abstract

White matter has emerged as a key therapeutic target in ischemic stroke due to its role in sensorimotor and cognitive outcomes. Our recent findings have preliminarily revealed a potential link between microglial HDAC3 and white matter injury following stroke. However, the mechanisms by which microglial HDAC3 mediates these effects remain unclear. We generated microglia-specific HDAC3 knockout mice (HDAC3-miKO). DTI, electrophysiological technique and transmission electron microscopy were used to assess HDAC3-miKO's effects on white matter. RNA sequencing, flow cytometry, immunofluorescence staining and phagocytosis assay were conducted to investigate the mechanism by which HDAC3-miKO ameliorated white matter injury. Macrophage depletion and reconstitution experiments further confirmed the involvement of macrophage CCR2 in the enhanced white matter repair and sensorimotor function in HDAC3-miKO mice. HDAC3-miKO promoted post-stroke oligodendrogenesis and long-term histological and functional integrity of white matter without affecting early-stage white matter integrity. In the acute phase, HDAC3-deficient microglia showed enhanced chemotaxis, recruiting macrophages to the infarct core probably by CCL2/CCL7, where dMBP-labelled myelin debris surged and coincided with their infiltration. Infiltrated macrophages outperformed resident microglia in myelin phagocytosis, potentially serving as true pioneers in myelin debris clearance. Although macrophage phagocytosis potential was similar between HDAC3-miKO and WT mice, increased macrophage numbers in HDAC3-miKO accelerated myelin debris clearance. Reconstitution with CCR2-KO macrophages in HDAC3-miKO mice slowed this clearance, reversing HDAC3-miKO's beneficial effects. Our study demonstrates that HDAC3-deficient microglia promote post-stroke remyelination by recruiting macrophages to accelerate myelin debris clearance, underscoring the essential role of infiltrated macrophages in HDAC3-miKO-induced beneficial outcomes. These findings advance our understanding of microglial HDAC3's role and suggest therapeutic potential for targeting microglial HDAC3 in ischemic stroke.

Keywords

References

  1. Glia. 2022 Jul;70(7):1215-1250 [PMID: 35107839]
  2. Mol Neurobiol. 2020 Nov;57(11):4810-4824 [PMID: 32803489]
  3. J Neurosci. 2006 Dec 13;26(50):12904-13 [PMID: 17167081]
  4. J Neuroinflammation. 2013 Mar 04;10:35 [PMID: 23452918]
  5. Glia. 2015 Apr;63(4):635-51 [PMID: 25452166]
  6. Front Cell Neurosci. 2022 Feb 07;16:816439 [PMID: 35197828]
  7. Curr Protoc. 2021 Mar;1(3):e73 [PMID: 33687792]
  8. Nat Med. 2018 Mar;24(3):338-351 [PMID: 29431744]
  9. Curr Cardiol Rep. 2016 Dec;18(12):123 [PMID: 27796861]
  10. Neurol Int. 2022 Oct 21;14(4):841-874 [PMID: 36278693]
  11. PLoS Biol. 2018 Oct 17;16(10):e2005264 [PMID: 30332405]
  12. Acta Neuropathol Commun. 2018 Nov 19;6(1):124 [PMID: 30454040]
  13. FASEB J. 2006 Jul;20(9):1315-27 [PMID: 16816106]
  14. Methods Mol Biol. 2019;1936:37-63 [PMID: 30820892]
  15. PLoS One. 2009 Nov 13;4(11):e7754 [PMID: 19915661]
  16. Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2300012120 [PMID: 37307473]
  17. Nat Commun. 2018 Nov 19;9(1):4845 [PMID: 30451869]
  18. Int J Mol Sci. 2019 Mar 05;20(5): [PMID: 30841513]
  19. Front Neurol. 2021 Jul 15;12:659740 [PMID: 34335439]
  20. Cell Immunol. 2022 Oct;380:104591 [PMID: 36030093]
  21. J Neuroinflammation. 2016 Nov 4;13(1):285 [PMID: 27814740]
  22. Eur J Med Chem. 2020 Apr 15;192:112171 [PMID: 32163814]
  23. STAR Protoc. 2021 May 13;2(2):100537 [PMID: 34036283]
  24. Acta Neuropathol. 2019 May;137(5):785-797 [PMID: 30929040]
  25. Brain. 2017 Feb;140(2):399-413 [PMID: 28007993]
  26. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  27. ACS Chem Neurosci. 2022 Sep 7;13(17):2579-2598 [PMID: 35947794]
  28. Restor Neurol Neurosci. 2015;33(3):309-19 [PMID: 25698108]
  29. Stroke. 1995 Apr;26(4):627-34; discussion 635 [PMID: 7709410]
  30. J Exp Med. 2021 Oct 4;218(10): [PMID: 34424266]
  31. J Neuroinflammation. 2023 Apr 3;20(1):89 [PMID: 37013543]
  32. JCI Insight. 2023 Aug 22;8(16): [PMID: 37606039]
  33. Nat Rev Immunol. 2017 Jul;17(7):451-460 [PMID: 28461703]
  34. Cell Rep. 2018 Dec 4;25(10):2755-2765.e5 [PMID: 30517863]
  35. Eur J Pharmacol. 2023 May 15;947:175667 [PMID: 36997050]
  36. Acta Neuropathol. 2014 Aug;128(2):161-75 [PMID: 24913350]
  37. Neurobiol Dis. 2023 Apr;179:106063 [PMID: 36889482]
  38. J Neuroinflammation. 2023 Feb 25;20(1):50 [PMID: 36829205]
  39. Stroke. 2010 Oct;41(10 Suppl):S112-3 [PMID: 20876482]
  40. Front Cell Neurosci. 2021 Mar 19;15:651827 [PMID: 33815067]
  41. J Cereb Blood Flow Metab. 2019 Jul;39(7):1394-1409 [PMID: 29972653]
  42. J Vis Exp. 2014 Jun 08;(88): [PMID: 24962472]
  43. NeuroRx. 2004 Jan;1(1):36-45 [PMID: 15717006]
  44. Cell Rep. 2023 Dec 26;42(12):113574 [PMID: 38100356]
  45. Nat Neurosci. 2016 Aug;19(8):995-8 [PMID: 27294511]
  46. STAR Protoc. 2021 Dec 08;2(4):101004 [PMID: 34917981]
  47. Biostatistics. 2017 Apr 1;18(2):275-294 [PMID: 27756721]
  48. J Neuroinflammation. 2024 Jul 12;21(1):170 [PMID: 38997746]
  49. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  50. J Neuroinflammation. 2018 Jun 4;15(1):174 [PMID: 29866203]
  51. Brain. 2021 Nov 29;144(10):2933-2945 [PMID: 34244729]
  52. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  53. Front Immunol. 2022 Feb 18;13:845678 [PMID: 35251047]
  54. J Neuroinflammation. 2022 May 16;19(1):112 [PMID: 35578342]
  55. Brain. 2006 Feb;129(Pt 2):517-26 [PMID: 16364958]
  56. Nat Rev Mol Cell Biol. 2019 Feb;20(2):102-115 [PMID: 30390028]
  57. Nat Commun. 2018 Mar 26;9(1):1228 [PMID: 29581545]
  58. Cell. 2022 Oct 27;185(22):4135-4152.e22 [PMID: 36257314]
  59. Immunity. 2021 Jul 13;54(7):1527-1542.e8 [PMID: 34015256]
  60. Sci Adv. 2023 Mar 15;9(11):eadd3243 [PMID: 36930718]
  61. CNS Neurosci Ther. 2019 Sep;25(9):1018-1029 [PMID: 31140740]
  62. Prog Neurobiol. 2016 Jun;141:45-60 [PMID: 27090751]
  63. Front Cell Neurosci. 2022 Jul 11;16:950819 [PMID: 35899017]
  64. Acta Neuropathol. 2020 Oct;140(4):513-534 [PMID: 32772264]
  65. PLoS One. 2010 Feb 23;5(2):e9380 [PMID: 20186338]
  66. Exp Ther Med. 2017 Mar;13(3):909-912 [PMID: 28450918]
  67. J Exp Med. 2015 Apr 6;212(4):481-95 [PMID: 25779633]
  68. Neurobiol Dis. 2022 Feb;163:105608 [PMID: 34979258]
  69. Theranostics. 2020 Jan 1;10(1):74-90 [PMID: 31903107]
  70. Sci Adv. 2024 Mar 8;10(10):eade6900 [PMID: 38446877]
  71. Theranostics. 2022 Apr 24;12(7):3553-3573 [PMID: 35547763]
  72. Brain. 2024 Apr 4;147(4):1294-1311 [PMID: 38289861]
  73. FASEB J. 2020 Jan;34(1):648-662 [PMID: 31914678]
  74. Neurology. 2015 Apr 21;84(16):1685-92 [PMID: 25809303]
  75. Circ Res. 2022 Feb 18;130(4):512-528 [PMID: 35175851]
  76. Neurorehabil Neural Repair. 2023 Aug;37(8):503-518 [PMID: 37503724]
  77. Sci Immunol. 2020 Oct 16;5(52): [PMID: 33067381]
  78. Cell Mol Immunol. 2023 Nov;20(11):1277-1289 [PMID: 37365324]
  79. Elife. 2021 Mar 16;10: [PMID: 33724186]
  80. J Neurosci. 2014 Apr 30;34(18):6316-22 [PMID: 24790202]
  81. Oncotarget. 2017 May 17;8(47):83155-83170 [PMID: 29137331]
  82. J Cell Biol. 2018 Apr 2;217(4):1249-1268 [PMID: 29472387]
  83. Theranostics. 2022 Mar 28;12(7):3131-3149 [PMID: 35547747]
  84. J Neuropathol Exp Neurol. 2010 Jan;69(1):1-15 [PMID: 20010307]
  85. Cancer Immunol Res. 2023 May 3;11(5):657-673 [PMID: 36898011]
  86. J Vis Exp. 2017 Jun 22;(124): [PMID: 28671658]
  87. Stroke. 2009 Mar;40(3 Suppl):S40-4 [PMID: 19064785]
  88. Front Biosci (Elite Ed). 2012 Jan 01;4(5):1926-36 [PMID: 22202008]
  89. Cell Mol Neurobiol. 1996 Aug;16(4):517-28 [PMID: 8879753]

MeSH Term

Animals
Mice, Knockout
Macrophages
Mice
Histone Deacetylases
Microglia
Stroke
Myelin Sheath
Phagocytosis
White Matter
Male
Disease Models, Animal
Mice, Inbred C57BL
Receptors, CCR2

Chemicals

Histone Deacetylases
histone deacetylase 3
Receptors, CCR2

Word Cloud

Similar Articles

Cited By