Interface-engineered non-volatile visible-blind photodetector for in-sensor computing.

Ge Li, Donggang Xie, Qinghua Zhang, Mingzhen Zhang, Zhuohui Liu, Zheng Wang, Jiahui Xie, Erjia Guo, Meng He, Can Wang, Lin Gu, Guozhen Yang, Kuijuan Jin, Chen Ge
Author Information
  1. Ge Li: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China. ORCID
  2. Donggang Xie: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
  3. Qinghua Zhang: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China. ORCID
  4. Mingzhen Zhang: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
  5. Zhuohui Liu: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
  6. Zheng Wang: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
  7. Jiahui Xie: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
  8. Erjia Guo: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China. ORCID
  9. Meng He: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
  10. Can Wang: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China. ORCID
  11. Lin Gu: Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, China. ORCID
  12. Guozhen Yang: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
  13. Kuijuan Jin: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China. kjjin@iphy.ac.cn. ORCID
  14. Chen Ge: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China. gechen@iphy.ac.cn. ORCID

Abstract

Ultraviolet (UV) detection is extensively used in a variety of applications. However, the storage and processing of information after detection require multiple components, resulting in increased energy consumption and data transmission latency. In this paper, a reconfigurable UV photodetector based on CeO/SrTiO heterostructures is demonstrated with in-sensor computing capabilities achieved through interface engineering. We show that the non-volatile storage capability of the device could be significantly improved by the introduction of an oxygen reservoir. A photodetector array operated as a single-layer neural network was constructed, in which edge detection and pattern recognition were realized without the need for external memory and computing units. The location and classification of corona discharges in real-world environments were also simulated and achieved an accuracy of 100%. The approach proposed here offers promising avenues and material options for creating non-volatile smart photodetectors.

References

  1. Nat Commun. 2020 Jul 20;11(1):3650 [PMID: 32686663]
  2. Nat Commun. 2023 Nov 7;14(1):7176 [PMID: 37935751]
  3. Nature. 2002 Sep 26;419(6905):378-80 [PMID: 12353030]
  4. Adv Mater. 2011 Feb 1;23(5):649-53 [PMID: 21274914]
  5. Nat Commun. 2023 Jun 08;14(1):3365 [PMID: 37291127]
  6. J Am Chem Soc. 2011 Aug 24;133(33):12952-5 [PMID: 21780802]
  7. Nat Commun. 2022 Apr 1;13(1):1729 [PMID: 35365642]
  8. Nat Mater. 2004 Jun;3(6):394-7 [PMID: 15146175]
  9. Nat Mater. 2015 Feb;14(2):193-8 [PMID: 25485985]
  10. Nat Nanotechnol. 2019 Aug;14(8):776-782 [PMID: 31308498]
  11. Science. 2013 Mar 22;339(6126):1402-5 [PMID: 23520104]
  12. Sci Adv. 2023 Sep 15;9(37):eadi5104 [PMID: 37713483]
  13. Science. 2005 Jul 29;309(5735):713-4 [PMID: 16051777]
  14. Nature. 2020 Mar;579(7797):62-66 [PMID: 32132692]
  15. J Phys Chem Lett. 2015 Oct 1;6(19):3781-6 [PMID: 26722870]
  16. Nat Mater. 2023 Dec;22(12):1499-1506 [PMID: 37770677]
  17. Nat Mater. 2006 Apr;5(4):312-20 [PMID: 16565712]
  18. ACS Appl Mater Interfaces. 2023 Sep 20;15(37):43994-44000 [PMID: 37672724]
  19. Nano Lett. 2023 May 24;23(10):4524-4532 [PMID: 37165515]
  20. Nat Commun. 2018 Nov 29;9(1):5063 [PMID: 30498209]
  21. Nat Commun. 2023 Jul 7;14(1):4012 [PMID: 37419923]
  22. Science. 2009 Apr 3;324(5923):63-6 [PMID: 19228998]
  23. ACS Appl Mater Interfaces. 2016 Dec 21;8(50):34590-34597 [PMID: 27936535]
  24. Adv Mater. 2022 Mar;34(10):e2109498 [PMID: 35014093]
  25. Nat Commun. 2022 Nov 3;13(1):6590 [PMID: 36329017]
  26. Nat Nanotechnol. 2023 Nov;18(11):1303-1310 [PMID: 37474683]
  27. Opt Lett. 2007 Sep 1;32(17):2526-8 [PMID: 17767293]
  28. Adv Mater. 2013 Oct 4;25(37):5321-8 [PMID: 24089350]
  29. Nature. 2020 Mar;579(7797):32-33 [PMID: 32132685]
  30. Small. 2018 Oct;14(42):e1802915 [PMID: 30260567]

Grants

  1. 12222414/National Natural Science Foundation of China (National Science Foundation of China)

Word Cloud

Created with Highcharts 10.0.0detectionphotodetectorcomputingnon-volatileUVstoragein-sensorachievedUltravioletextensivelyusedvarietyapplicationsHoweverprocessinginformationrequiremultiplecomponentsresultingincreasedenergyconsumptiondatatransmissionlatencypaperreconfigurablebasedCeO/SrTiOheterostructuresdemonstratedcapabilitiesinterfaceengineeringshowcapabilitydevicesignificantlyimprovedintroductionoxygenreservoirarrayoperatedsingle-layerneuralnetworkconstructededgepatternrecognitionrealizedwithoutneedexternalmemoryunitslocationclassificationcoronadischargesreal-worldenvironmentsalsosimulatedaccuracy100%approachproposedofferspromisingavenuesmaterialoptionscreatingsmartphotodetectorsInterface-engineeredvisible-blind

Similar Articles

Cited By